2,181 research outputs found

    Sequential Recommendation with Self-Attentive Multi-Adversarial Network

    Full text link
    Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (called factor) is involved, it is difficult to analyze when and how each individual factor would affect the final recommendation performance. For this purpose, we take a new perspective and introduce adversarial learning to sequential recommendation. In this paper, we present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation. Specifically, our proposed MFGAN has two kinds of modules: a Transformer-based generator taking user behavior sequences as input to recommend the possible next items, and multiple factor-specific discriminators to evaluate the generated sub-sequence from the perspectives of different factors. To learn the parameters, we adopt the classic policy gradient method, and utilize the reward signal of discriminators for guiding the learning of the generator. Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed model over the state-of-the-art methods, in terms of effectiveness and interpretability

    Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating Mechanisms

    Full text link
    Neural network based models for collaborative filtering have started to gain attention recently. One branch of research is based on using deep generative models to model user preferences where variational autoencoders were shown to produce state-of-the-art results. However, there are some potentially problematic characteristics of the current variational autoencoder for CF. The first is the too simplistic prior that VAEs incorporate for learning the latent representations of user preference. The other is the model's inability to learn deeper representations with more than one hidden layer for each network. Our goal is to incorporate appropriate techniques to mitigate the aforementioned problems of variational autoencoder CF and further improve the recommendation performance. Our work is the first to apply flexible priors to collaborative filtering and show that simple priors (in original VAEs) may be too restrictive to fully model user preferences and setting a more flexible prior gives significant gains. We experiment with the VampPrior, originally proposed for image generation, to examine the effect of flexible priors in CF. We also show that VampPriors coupled with gating mechanisms outperform SOTA results including the Variational Autoencoder for Collaborative Filtering by meaningful margins on 2 popular benchmark datasets (MovieLens & Netflix)
    • …
    corecore