1,371 research outputs found

    Beyond Intra-modality: A Survey of Heterogeneous Person Re-identification

    Full text link
    An efficient and effective person re-identification (ReID) system relieves the users from painful and boring video watching and accelerates the process of video analysis. Recently, with the explosive demands of practical applications, a lot of research efforts have been dedicated to heterogeneous person re-identification (Hetero-ReID). In this paper, we provide a comprehensive review of state-of-the-art Hetero-ReID methods that address the challenge of inter-modality discrepancies. According to the application scenario, we classify the methods into four categories -- low-resolution, infrared, sketch, and text. We begin with an introduction of ReID, and make a comparison between Homogeneous ReID (Homo-ReID) and Hetero-ReID tasks. Then, we describe and compare existing datasets for performing evaluations, and survey the models that have been widely employed in Hetero-ReID. We also summarize and compare the representative approaches from two perspectives, i.e., the application scenario and the learning pipeline. We conclude by a discussion of some future research directions. Follow-up updates are avaible at: https://github.com/lightChaserX/Awesome-Hetero-reIDComment: Accepted by IJCAI 2020. Project url: https://github.com/lightChaserX/Awesome-Hetero-reI

    Visible-Infrared Person Re-Identification Using Privileged Intermediate Information

    Full text link
    Visible-infrared person re-identification (ReID) aims to recognize a same person of interest across a network of RGB and IR cameras. Some deep learning (DL) models have directly incorporated both modalities to discriminate persons in a joint representation space. However, this cross-modal ReID problem remains challenging due to the large domain shift in data distributions between RGB and IR modalities. % This paper introduces a novel approach for a creating intermediate virtual domain that acts as bridges between the two main domains (i.e., RGB and IR modalities) during training. This intermediate domain is considered as privileged information (PI) that is unavailable at test time, and allows formulating this cross-modal matching task as a problem in learning under privileged information (LUPI). We devised a new method to generate images between visible and infrared domains that provide additional information to train a deep ReID model through an intermediate domain adaptation. In particular, by employing color-free and multi-step triplet loss objectives during training, our method provides common feature representation spaces that are robust to large visible-infrared domain shifts. % Experimental results on challenging visible-infrared ReID datasets indicate that our proposed approach consistently improves matching accuracy, without any computational overhead at test time. The code is available at: \href{https://github.com/alehdaghi/Cross-Modal-Re-ID-via-LUPI}{https://github.com/alehdaghi/Cross-Modal-Re-ID-via-LUPI

    Learning Modal-Invariant and Temporal-Memory for Video-based Visible-Infrared Person Re-Identification

    Full text link
    Thanks for the cross-modal retrieval techniques, visible-infrared (RGB-IR) person re-identification (Re-ID) is achieved by projecting them into a common space, allowing person Re-ID in 24-hour surveillance systems. However, with respect to the probe-to-gallery, almost all existing RGB-IR based cross-modal person Re-ID methods focus on image-to-image matching, while the video-to-video matching which contains much richer spatial- and temporal-information remains under-explored. In this paper, we primarily study the video-based cross-modal person Re-ID method. To achieve this task, a video-based RGB-IR dataset is constructed, in which 927 valid identities with 463,259 frames and 21,863 tracklets captured by 12 RGB/IR cameras are collected. Based on our constructed dataset, we prove that with the increase of frames in a tracklet, the performance does meet more enhancement, demonstrating the significance of video-to-video matching in RGB-IR person Re-ID. Additionally, a novel method is further proposed, which not only projects two modalities to a modal-invariant subspace, but also extracts the temporal-memory for motion-invariant. Thanks to these two strategies, much better results are achieved on our video-based cross-modal person Re-ID. The code and dataset are released at: https://github.com/VCMproject233/MITML
    • …
    corecore