26,144 research outputs found

    Structured Sparse Modelling with Hierarchical GP

    Get PDF
    In this paper a new Bayesian model for sparse linear regression with a spatio-temporal structure is proposed. It incorporates the structural assumptions based on a hierarchical Gaussian process prior for spike and slab coefficients. We design an inference algorithm based on Expectation Propagation and evaluate the model over the real data.Comment: SPARS 201

    NICMOS Imaging of a Damped Lyman-alpha Absorber at z=1.89 toward LBQS 1210+1731 : Constraints on Size and Star Formation Rate

    Get PDF
    We report results of a high-resolution imaging search (in rest frame H-α\alpha and optical continuum) for the galaxy associated with the damped Lyman-α\alpha (DLA) absorber at z=1.892z=1.892 toward the zem=2.543z_{em}=2.543 quasar LBQS 1210+1731, using HST/NICMOS. After PSF subtraction, a feature is seen in both the broad-band and narrow-band images, at a projected separation of 0.25\arcsec from the quasar. If associated with the DLA, the object would be 23\approx 2-3 h701h_{70}^{-1} kpc in size with a flux of 9.8±2.49.8 \pm 2.4 μ\muJy in the F160W filter, implying a luminosity at λcentral=5500\lambda_{central}=5500 {\AA} in the rest frame of 1.5×10101.5 \times 10^{10} h702h_{70}^{-2} L_{\odot} at z=1.89z=1.89, for q0=0.5q_{0}=0.5. However, no significant H-α\alpha emission is seen, suggesting a low star formation rate (SFR) (3 σ\sigma upper limit of 4.0 h702h_{70}^{-2} M_{\odot} yr1^{-1}), or very high dust obscuration. Alternatively, the object may be associated with the host galaxy of the quasar. H-band images obtained with the NICMOS camera 2 coronagraph show a much fainter structure 45\approx 4-5 h701h_{70}^{-1} kpc in size and containing four knots of continuum emission, located 0.7\arcsec away from the quasar. We have probed regions far closer to the quasar sight-line than in most previous studies of high-redshift intervening DLAs. The two objects we report mark the closest detected high-redshift DLA candidates yet to any quasar sight line. If the features in our images are associated with the DLA, they suggest faint, compact, somewhat clumpy objects rather than large, well-formed proto-galactic disks or spheroids.Comment: 52 pages of text, 19 figures, To be published in Astrophysical Journal (accepted Dec. 8, 1999

    The Ks-band Luminosity and Stellar Mass Functions of Galaxies in z~1 Clusters

    Full text link
    We present the near-infrared (Ks-band) luminosity function of galaxies in two z~1 cluster candidates, 3C336 and Q1335+28. A third cluster, 3C289, was observed but found to be contaminated by a foreground system. Our wide field imaging data reach to Ks=20.5 (5sigma), corresponding to ~M*+2.7 with respect to the passive evolution. The near-infrared luminosity traces the stellar mass of a galaxy due to its small sensitivity to the recent star formation history. Thus the luminosity function can be transformed to the stellar mass function of galaxies using the JKJ-K colours with only a small correction (factor<2) for the effects of on-going star formation. The derived stellar mass function spans a wide range in mass from ~3 x 10^{11}Msun down to ~6 x 10^{9}Msun (set by the magnitude limit). The form of the mass function is very similar to lower redshift counterparts such as that from 2MASS/LCRS clusters (Balogh et al. 2001) and the z=0.31 clusters (Barger et al. 1998). This indicates little evolution of galaxy masses from z=1 to the present-day. Combined with colour data that suggest star formation is completed early (z>>1) in the cluster core, it seems that the galaxy formation processes (both star formation and mass assembly) are strongly accerelated in dense environments and has been largely completed by z=1. We investigate whether the epoch of mass assembly of massive cluster galaxies is earlier than that predicted by the hierarchical galaxy formation models. These models predict the increase of characteristic mass by more than factor ~3 between z=1 and the present day. This seems incompatible with our data.Comment: 12 pages, including 12 figures, uses mn.sty and epsf.sty. Accepted for publication in MNRAS Main Journa

    A Search for the Damped Ly-alpha Absorber at z=1.86 toward QSO 1244+3443 with NICMOS

    Full text link
    We have carried out a high-resolution imaging search for the galaxy associated with the damped Lyman-alpha (DLA) absorber at z=1.859 toward the z_{em}=2.48 quasar QSO 1244+3443, using the HST and the NICMOS. Images were obtained in the broad filter F160W and the narrow filter F187N with camera 2 on NICMOS with the goal of detecting the rest-frame optical continuum and the H-alpha line emission from the DLA. After PSF subtraction, two weak features are seen at projected separations of 0.16-0.24" from the quasar. Parts of these features may be associated with the DLA absorber, although we cannot completely rule out that they could be artifacts of the point spread function (PSF). If associated with the DLA, the objects would be ~1-2 h_{70}^{-1} kpc in size with integrated flux densities of 2.5 and 3.3 mu Jy in the F160W filter, implying luminosities at lambda_{central}=5600 A in the DLA rest frame of 4.4-5.9 x 10^{9} h_{70}^{-2} L_{solar} at z=1.86, for q0=0.5. However, no significant H-alpha line emission is seen from these objects, suggesting low star formation rates (SFRs). Our 3 sigma upper limit on the SFR in the DLA is 1.3 h_{70}^{-2} M_{solar}/yr for q0 = 0.5 (2.4 h_{70}^{-2} M_{solar} yr^{-1} for q0 = 0.1). This together with our earlier result for LBQS 1210+1731 mark a significant improvement over previous constraints on the star formation rates of DLAs. A combination of low SFR and some dust extinction is likely to be responsible for the lack of H-alpha emission. Alternatively, the objects, may be associated with the quasar host galaxy. In any case, our observations suggest that the DLA is not a large bright proto-disk, but a compact object or a low-surface brightness galaxy. If the two features are PSF artifacts then the constraints on DLA properties are even more severe.Comment: 28 pages, 9 figures. Accepted for publication in The Astrophysical Journal. Figures are given at a slightly lower resolution here, to decrease file sizes. The higher resolution versions can be found in the Ap
    corecore