138 research outputs found

    Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks

    Get PDF
    n source and destination pairs randomly located in an area want to communicate with each other. Signals transmitted from one user to another at distance r apart are subject to a power loss of r^{-alpha}, as well as a random phase. We identify the scaling laws of the information theoretic capacity of the network. In the case of dense networks, where the area is fixed and the density of nodes increasing, we show that the total capacity of the network scales linearly with n. This improves on the best known achievability result of n^{2/3} of Aeron and Saligrama, 2006. In the case of extended networks, where the density of nodes is fixed and the area increasing linearly with n, we show that this capacity scales as n^{2-alpha/2} for 2<alpha<3 and sqrt{n} for alpha>3. The best known earlier result (Xie and Kumar 2006) identified the scaling law for alpha > 4. Thus, much better scaling than multihop can be achieved in dense networks, as well as in extended networks with low attenuation. The performance gain is achieved by intelligent node cooperation and distributed MIMO communication. The key ingredient is a hierarchical and digital architecture for nodal exchange of information for realizing the cooperation.Comment: 56 pages, 16 figures, submitted to IEEE Transactions on Information Theor

    One-Hop Throughput of Wireless Networks with Random Connections

    Full text link
    We consider one-hop communication in wireless networks with random connections. In the random connection model, the channel powers between different nodes are drawn from a common distribution in an i.i.d. manner. An scheme achieving the throughput scaling of order n1/3−δn^{1/3-\delta}, for any δ>0\delta>0, is proposed, where nn is the number of nodes. Such achievable throughput, along with the order n1/3n^{1/3} upper bound derived by Cui et al., characterizes the throughput capacity of one-hop schemes for the class of connection models with finite mean and variance.Comment: Submitted to IEEE Communications Letter

    Double-Directional Information Azimuth Spectrum and Relay Network Tomography for a Decentralized Wireless Relay Network

    Full text link
    A novel channel representation for a two-hop decentralized wireless relay network (DWRN) is proposed, where the relays operate in a completely distributive fashion. The modeling paradigm applies an analogous approach to the description method for a double-directional multipath propagation channel, and takes into account the finite system spatial resolution and the extended relay listening/transmitting time. Specifically, the double-directional information azimuth spectrum (IAS) is formulated to provide a compact representation of information flows in a DWRN. The proposed channel representation is then analyzed from a geometrically-based statistical modeling perspective. Finally, we look into the problem of relay network tomography (RNT), which solves an inverse problem to infer the internal structure of a DWRN by using the instantaneous doubledirectional IAS recorded at multiple measuring nodes exterior to the relay region

    Spatial Interference Cancelation for Mobile Ad Hoc Networks: Perfect CSI

    Full text link
    Interference between nodes directly limits the capacity of mobile ad hoc networks. This paper focuses on spatial interference cancelation with perfect channel state information (CSI), and analyzes the corresponding network capacity. Specifically, by using multiple antennas, zero-forcing beamforming is applied at each receiver for canceling the strongest interferers. Given spatial interference cancelation, the network transmission capacity is analyzed in this paper, which is defined as the maximum transmitting node density under constraints on outage and the signal-to-interference-noise ratio. Assuming the Poisson distribution for the locations of network nodes and spatially i.i.d. Rayleigh fading channels, mathematical tools from stochastic geometry are applied for deriving scaling laws for transmission capacity. Specifically, for small target outage probability, transmission capacity is proved to increase following a power law, where the exponent is the inverse of the size of antenna array or larger depending on the pass loss exponent. As shown by simulations, spatial interference cancelation increases transmission capacity by an order of magnitude or more even if only one extra antenna is added to each node.Comment: 6 pages; submitted to IEEE Globecom 200

    Demystifying the Scaling Laws of Dense Wireless Networks: No Linear Scaling in Practice

    Full text link
    We optimize the hierarchical cooperation protocol of Ozgur, Leveque and Tse, which is supposed to yield almost linear scaling of the capacity of a dense wireless network with the number of users nn. Exploiting recent results on the optimality of "treating interference as noise" in Gaussian interference channels, we are able to optimize the achievable average per-link rate and not just its scaling law. Our optimized hierarchical cooperation protocol significantly outperforms the originally proposed scheme. On the negative side, we show that even for very large nn, the rate scaling is far from linear, and the optimal number of stages tt is less than 4, instead of t→∞t \rightarrow \infty as required for almost linear scaling. Combining our results and the fact that, beyond a certain user density, the network capacity is fundamentally limited by Maxwell laws, as shown by Francheschetti, Migliore and Minero, we argue that there is indeed no intermediate regime of linear scaling for dense networks in practice.Comment: 5 pages, 6 figures, ISIT 2014. arXiv admin note: substantial text overlap with arXiv:1402.181
    • …
    corecore