65 research outputs found

    IST Austria Thesis

    Get PDF
    Modern computer vision systems heavily rely on statistical machine learning models, which typically require large amounts of labeled data to be learned reliably. Moreover, very recently computer vision research widely adopted techniques for representation learning, which further increase the demand for labeled data. However, for many important practical problems there is relatively small amount of labeled data available, so it is problematic to leverage full potential of the representation learning methods. One way to overcome this obstacle is to invest substantial resources into producing large labelled datasets. Unfortunately, this can be prohibitively expensive in practice. In this thesis we focus on the alternative way of tackling the aforementioned issue. We concentrate on methods, which make use of weakly-labeled or even unlabeled data. Specifically, the first half of the thesis is dedicated to the semantic image segmentation task. We develop a technique, which achieves competitive segmentation performance and only requires annotations in a form of global image-level labels instead of dense segmentation masks. Subsequently, we present a new methodology, which further improves segmentation performance by leveraging tiny additional feedback from a human annotator. By using our methods practitioners can greatly reduce the amount of data annotation effort, which is required to learn modern image segmentation models. In the second half of the thesis we focus on methods for learning from unlabeled visual data. We study a family of autoregressive models for modeling structure of natural images and discuss potential applications of these models. Moreover, we conduct in-depth study of one of these applications, where we develop the state-of-the-art model for the probabilistic image colorization task

    Generic Object Detection and Segmentation for Real-World Environments

    Get PDF

    Towards Video Transformers for Automatic Human Analysis

    Full text link
    [eng] With the aim of creating artificial systems capable of mirroring the nuanced understanding and interpretative powers inherent to human cognition, this thesis embarks on an exploration of the intersection between human analysis and Video Transformers. The objective is to harness the potential of Transformers, a promising architectural paradigm, to comprehend the intricacies of human interaction, thus paving the way for the development of empathetic and context-aware intelligent systems. In order to do so, we explore the whole Computer Vision pipeline, from data gathering, to deeply analyzing recent developments, through model design and experimentation. Central to this study is the creation of UDIVA, an expansive multi-modal, multi-view dataset capturing dyadic face-to-face human interactions. Comprising 147 participants across 188 sessions, UDIVA integrates audio-visual recordings, heart-rate measurements, personality assessments, socio- demographic metadata, and conversational transcripts, establishing itself as the largest dataset for dyadic human interaction analysis up to this date. This dataset provides a rich context for probing the capabilities of Transformers within complex environments. In order to validate its utility, as well as to elucidate Transformers' ability to assimilate diverse contextual cues, we focus on addressing the challenge of personality regression within interaction scenarios. We first adapt an existing Video Transformer to handle multiple contextual sources and conduct rigorous experimentation. We empirically observe a progressive enhancement in model performance as more context is added, reinforcing the potential of Transformers to decode intricate human dynamics. Building upon these findings, the Dyadformer emerges as a novel architecture, adept at long-range modeling of dyadic interactions. By jointly modeling both participants in the interaction, as well as embedding multi- modal integration into the model itself, the Dyadformer surpasses the baseline and other concurrent approaches, underscoring Transformers' aptitude in deciphering multifaceted, noisy, and challenging tasks such as the analysis of human personality in interaction. Nonetheless, these experiments unveil the ubiquitous challenges when training Transformers, particularly in managing overfitting due to their demand for extensive datasets. Consequently, we conclude this thesis with a comprehensive investigation into Video Transformers, analyzing topics ranging from architectural designs and training strategies, to input embedding and tokenization, traversing through multi-modality and specific applications. Across these, we highlight trends which optimally harness spatio-temporal representations that handle video redundancy and high dimensionality. A culminating performance comparison is conducted in the realm of video action classification, spotlighting strategies that exhibit superior efficacy, even compared to traditional CNN-based methods.[cat] Aquesta tesi busca crear sistemes artificials que reflecteixin les habilitats de comprensió i interpretació humanes a través de l'ús de Transformers per a vídeo. L'objectiu és utilitzar aquestes arquitectures per comprendre millor la interacció humana i desenvolupar sistemes intel·ligents i conscients de l'entorn. Això implica explorar àmplies àrees de la Visió per Computador, des de la recopilació de dades fins a l'anàlisi de l'estat de l'art i la prova experimental d'aquests models. Una part essencial d'aquest estudi és la creació d'UDIVA, un ampli conjunt de dades multimodal i multivista que enregistra interaccions humanes cara a cara. Amb 147 participants i 188 sessions, UDIVA inclou contingut audiovisual, freqüència cardíaca, perfils de personalitat, dades sociodemogràfiques i transcripcions de les converses. És el conjunt de dades més gran conegut per a l'anàlisi de la interacció humana diàdica i proporciona un context ric per a l'estudi de les capacitats dels Transformers en entorns complexos. Per tal de validar la seva utilitat i les habilitats dels Transformers, ens centrem en la regressió de la personalitat. Inicialment, adaptem un Transformer de vídeo per integrar diverses fonts de context. Mitjançant experiments exhaustius, observem millores progressives en els resultats amb la inclusió de més context, confirmant la capacitat dels Transformers. Motivats per aquests resultats, desenvolupem el Dyadformer, una arquitectura per interaccions diàdiques de llarga duració. Aquesta nova arquitectura considera simultàniament els dos participants en la interacció i incorpora la multimodalitat en un sol model. El Dyadformer supera la nostra proposta inicial i altres treballs similars, destacant la capacitat dels Transformers per abordar tasques complexes. No obstant això, aquestos experiments revelen reptes d'entrenament dels Transformers, com el sobreajustament, per la seva necessitat de grans conjunts de dades. La tesi conclou amb una anàlisi profunda dels Transformers per a vídeo, incloent dissenys arquitectònics, estratègies d'entrenament, preprocessament de vídeos, tokenització i multimodalitat. S'identifiquen tendències per gestionar la redundància i alta dimensionalitat de vídeos i es realitza una comparació de rendiment en la classificació d'accions a vídeo, destacant estratègies d'eficàcia superior als mètodes tradicionals basats en convolucions

    Incorporating prior knowledge into deep neural networks without handcrafted features

    Get PDF
    Deep learning (DL) is currently the largest area of research within artificial intelligence (AI). This success can largely be attributed to the data-driven nature of the DL algorithms themselves: unlike previous approaches in AI which required handcrafting and significant human intervention, DL models can be implemented and trained with little to no human involvement. The lack of handcrafting, however, can be a two-edged sword. DL algorithms are notorious for producing uninterpretable features, generalising badly to new tasks and relying on extraordinarily large datasets for training. In this thesis, on the assumption that these shortcomings are symptoms of the under-constrained training setup of deep networks, we address the question of how to incorporate knowledge into DL algorithms without reverting to complete handcrafting in order to train more data efficient algorithms. % In this thesis we consider different alternatives to this problem. We start by motivating this line of work with an example of a DL architecture which, inspired by symbolic AI, aims at extracting symbols from a simple environment and using those for quickly learning downstream tasks. Our proof-of-concept model shows that it is possible to address some of the data efficiency issues as well as obtaining more interpretable representations by reasoning at this higher level of abstraction. Our second approach for data-efficiency is based on pre-training: the idea is to pre-train some parts of the DL network on a different, but related, task to first learn useful feature extractors. For our experiments we pre-train the encoder of a reinforcement learning agent on a 3D scene prediction task and then use the features produced by the encoder to train a simulated robot arm on a reaching task. Crucially, unlike previous approaches that could only learn from fixed view-points, we are able to train an agent using observations captured from randomly changing positions around the robot arm, without having to train a separate policy for each observation position. Lastly, we focus on how to build in prior knowledge through the choice of dataset. To this end, instead of training DL models on a single dataset, we train them on a distribution over datasets that captures the space of tasks we are interested in. This training regime produces models that can flexibly adapt to any dataset within the distribution at test time. Crucially they only need a small number of observations in order to adapt their predictions, thus addressing the data-efficiency challenge at test time. We call this family of meta-learning models for few-shot prediction Neural Processes (NPs). In addition to successfully learning how to carry out few-shot regression and classification, NPs produce uncertainty estimates and can generate coherent samples at arbitrary resolutions.Open Acces

    Trennung und Schätzung der Anzahl von Audiosignalquellen mit Zeit- und Frequenzüberlappung

    Get PDF
    Everyday audio recordings involve mixture signals: music contains a mixture of instruments; in a meeting or conference, there is a mixture of human voices. For these mixtures, automatically separating or estimating the number of sources is a challenging task. A common assumption when processing mixtures in the time-frequency domain is that sources are not fully overlapped. However, in this work we consider some cases where the overlap is severe — for instance, when instruments play the same note (unison) or when many people speak concurrently ("cocktail party") — highlighting the need for new representations and more powerful models. To address the problems of source separation and count estimation, we use conventional signal processing techniques as well as deep neural networks (DNN). We first address the source separation problem for unison instrument mixtures, studying the distinct spectro-temporal modulations caused by vibrato. To exploit these modulations, we developed a method based on time warping, informed by an estimate of the fundamental frequency. For cases where such estimates are not available, we present an unsupervised model, inspired by the way humans group time-varying sources (common fate). This contribution comes with a novel representation that improves separation for overlapped and modulated sources on unison mixtures but also improves vocal and accompaniment separation when used as an input for a DNN model. Then, we focus on estimating the number of sources in a mixture, which is important for real-world scenarios. Our work on count estimation was motivated by a study on how humans can address this task, which lead us to conduct listening experiments, confirming that humans are only able to estimate the number of up to four sources correctly. To answer the question of whether machines can perform similarly, we present a DNN architecture, trained to estimate the number of concurrent speakers. Our results show improvements compared to other methods, and the model even outperformed humans on the same task. In both the source separation and source count estimation tasks, the key contribution of this thesis is the concept of “modulation”, which is important to computationally mimic human performance. Our proposed Common Fate Transform is an adequate representation to disentangle overlapping signals for separation, and an inspection of our DNN count estimation model revealed that it proceeds to find modulation-like intermediate features.Im Alltag sind wir von gemischten Signalen umgeben: Musik besteht aus einer Mischung von Instrumenten; in einem Meeting oder auf einer Konferenz sind wir einer Mischung menschlicher Stimmen ausgesetzt. Für diese Mischungen ist die automatische Quellentrennung oder die Bestimmung der Anzahl an Quellen eine anspruchsvolle Aufgabe. Eine häufige Annahme bei der Verarbeitung von gemischten Signalen im Zeit-Frequenzbereich ist, dass die Quellen sich nicht vollständig überlappen. In dieser Arbeit betrachten wir jedoch einige Fälle, in denen die Überlappung immens ist zum Beispiel, wenn Instrumente den gleichen Ton spielen (unisono) oder wenn viele Menschen gleichzeitig sprechen (Cocktailparty) —, so dass neue Signal-Repräsentationen und leistungsfähigere Modelle notwendig sind. Um die zwei genannten Probleme zu bewältigen, verwenden wir sowohl konventionelle Signalverbeitungsmethoden als auch tiefgehende neuronale Netze (DNN). Wir gehen zunächst auf das Problem der Quellentrennung für Unisono-Instrumentenmischungen ein und untersuchen die speziellen, durch Vibrato ausgelösten, zeitlich-spektralen Modulationen. Um diese Modulationen auszunutzen entwickelten wir eine Methode, die auf Zeitverzerrung basiert und eine Schätzung der Grundfrequenz als zusätzliche Information nutzt. Für Fälle, in denen diese Schätzungen nicht verfügbar sind, stellen wir ein unüberwachtes Modell vor, das inspiriert ist von der Art und Weise, wie Menschen zeitveränderliche Quellen gruppieren (Common Fate). Dieser Beitrag enthält eine neuartige Repräsentation, die die Separierbarkeit für überlappte und modulierte Quellen in Unisono-Mischungen erhöht, aber auch die Trennung in Gesang und Begleitung verbessert, wenn sie in einem DNN-Modell verwendet wird. Im Weiteren beschäftigen wir uns mit der Schätzung der Anzahl von Quellen in einer Mischung, was für reale Szenarien wichtig ist. Unsere Arbeit an der Schätzung der Anzahl war motiviert durch eine Studie, die zeigt, wie wir Menschen diese Aufgabe angehen. Dies hat uns dazu veranlasst, eigene Hörexperimente durchzuführen, die bestätigten, dass Menschen nur in der Lage sind, die Anzahl von bis zu vier Quellen korrekt abzuschätzen. Um nun die Frage zu beantworten, ob Maschinen dies ähnlich gut können, stellen wir eine DNN-Architektur vor, die erlernt hat, die Anzahl der gleichzeitig sprechenden Sprecher zu ermitteln. Die Ergebnisse zeigen Verbesserungen im Vergleich zu anderen Methoden, aber vor allem auch im Vergleich zu menschlichen Hörern. Sowohl bei der Quellentrennung als auch bei der Schätzung der Anzahl an Quellen ist ein Kernbeitrag dieser Arbeit das Konzept der “Modulation”, welches wichtig ist, um die Strategien von Menschen mittels Computern nachzuahmen. Unsere vorgeschlagene Common Fate Transformation ist eine adäquate Darstellung, um die Überlappung von Signalen für die Trennung zugänglich zu machen und eine Inspektion unseres DNN-Zählmodells ergab schließlich, dass sich auch hier modulationsähnliche Merkmale finden lassen

    Scalable video compression with optimized visual performance and random accessibility

    Full text link
    This thesis is concerned with maximizing the coding efficiency, random accessibility and visual performance of scalable compressed video. The unifying theme behind this work is the use of finely embedded localized coding structures, which govern the extent to which these goals may be jointly achieved. The first part focuses on scalable volumetric image compression. We investigate 3D transform and coding techniques which exploit inter-slice statistical redundancies without compromising slice accessibility. Our study shows that the motion-compensated temporal discrete wavelet transform (MC-TDWT) practically achieves an upper bound to the compression efficiency of slice transforms. From a video coding perspective, we find that most of the coding gain is attributed to offsetting the learning penalty in adaptive arithmetic coding through 3D code-block extension, rather than inter-frame context modelling. The second aspect of this thesis examines random accessibility. Accessibility refers to the ease with which a region of interest is accessed (subband samples needed for reconstruction are retrieved) from a compressed video bitstream, subject to spatiotemporal code-block constraints. We investigate the fundamental implications of motion compensation for random access efficiency and the compression performance of scalable interactive video. We demonstrate that inclusion of motion compensation operators within the lifting steps of a temporal subband transform incurs a random access penalty which depends on the characteristics of the motion field. The final aspect of this thesis aims to minimize the perceptual impact of visible distortion in scalable reconstructed video. We present a visual optimization strategy based on distortion scaling which raises the distortion-length slope of perceptually significant samples. This alters the codestream embedding order during post-compression rate-distortion optimization, thus allowing visually sensitive sites to be encoded with higher fidelity at a given bit-rate. For visual sensitivity analysis, we propose a contrast perception model that incorporates an adaptive masking slope. This versatile feature provides a context which models perceptual significance. It enables scene structures that otherwise suffer significant degradation to be preserved at lower bit-rates. The novelty in our approach derives from a set of "perceptual mappings" which account for quantization noise shaping effects induced by motion-compensated temporal synthesis. The proposed technique reduces wavelet compression artefacts and improves the perceptual quality of video
    corecore