28,373 research outputs found

    PHTrans: Parallelly Aggregating Global and Local Representations for Medical Image Segmentation

    Full text link
    The success of Transformer in computer vision has attracted increasing attention in the medical imaging community. Especially for medical image segmentation, many excellent hybrid architectures based on convolutional neural networks (CNNs) and Transformer have been presented and achieve impressive performance. However, most of these methods, which embed modular Transformer into CNNs, struggle to reach their full potential. In this paper, we propose a novel hybrid architecture for medical image segmentation called PHTrans, which parallelly hybridizes Transformer and CNN in main building blocks to produce hierarchical representations from global and local features and adaptively aggregate them, aiming to fully exploit their strengths to obtain better segmentation performance. Specifically, PHTrans follows the U-shaped encoder-decoder design and introduces the parallel hybird module in deep stages, where convolution blocks and the modified 3D Swin Transformer learn local features and global dependencies separately, then a sequence-to-volume operation unifies the dimensions of the outputs to achieve feature aggregation. Extensive experimental results on both Multi-Atlas Labeling Beyond the Cranial Vault and Automated Cardiac Diagnosis Challeng datasets corroborate its effectiveness, consistently outperforming state-of-the-art methods. The code is available at: https://github.com/lseventeen/PHTrans.Comment: 10 pages, 3 figure

    Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images

    Get PDF
    We propose a novel attention gate (AG) model for medical image analysis that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules when using convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN models such as VGG or U-Net architectures with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed AG models are evaluated on a variety of tasks, including medical image classification and segmentation. For classification, we demonstrate the use case of AGs in scan plane detection for fetal ultrasound screening. We show that the proposed attention mechanism can provide efficient object localisation while improving the overall prediction performance by reducing false positives. For segmentation, the proposed architecture is evaluated on two large 3D CT abdominal datasets with manual annotations for multiple organs. Experimental results show that AG models consistently improve the prediction performance of the base architectures across different datasets and training sizes while preserving computational efficiency. Moreover, AGs guide the model activations to be focused around salient regions, which provides better insights into how model predictions are made. The source code for the proposed AG models is publicly available.Comment: Accepted for Medical Image Analysis (Special Issue on Medical Imaging with Deep Learning). arXiv admin note: substantial text overlap with arXiv:1804.03999, arXiv:1804.0533

    A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D images

    Full text link
    Semantic segmentation is the pixel-wise labelling of an image. Since the problem is defined at the pixel level, determining image class labels only is not acceptable, but localising them at the original image pixel resolution is necessary. Boosted by the extraordinary ability of convolutional neural networks (CNN) in creating semantic, high level and hierarchical image features; excessive numbers of deep learning-based 2D semantic segmentation approaches have been proposed within the last decade. In this survey, we mainly focus on the recent scientific developments in semantic segmentation, specifically on deep learning-based methods using 2D images. We started with an analysis of the public image sets and leaderboards for 2D semantic segmantation, with an overview of the techniques employed in performance evaluation. In examining the evolution of the field, we chronologically categorised the approaches into three main periods, namely pre-and early deep learning era, the fully convolutional era, and the post-FCN era. We technically analysed the solutions put forward in terms of solving the fundamental problems of the field, such as fine-grained localisation and scale invariance. Before drawing our conclusions, we present a table of methods from all mentioned eras, with a brief summary of each approach that explains their contribution to the field. We conclude the survey by discussing the current challenges of the field and to what extent they have been solved.Comment: Updated with new studie
    • …
    corecore