603 research outputs found

    Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance

    Full text link
    Full Duplex or Simultaneous transmission and reception (STR) in the same frequency at the same time can potentially double the physical layer capacity. However, high power transmit signal will appear at receive chain as echoes with powers much higher than the desired received signal. Therefore, in order to achieve the potential gain, it is imperative to cancel these echoes. As these high power echoes can saturate low noise amplifier (LNA) and also digital domain echo cancellation requires unrealistically high resolution analog-to-digital converter (ADC), the echoes should be cancelled or suppressed sufficiently before LNA. In this paper we present a closed-loop echo cancellation technique which can be implemented purely in analogue domain. The advantages of our method are multiple-fold: it is robust to phase noise, does not require additional set of antennas, can be applied to wideband signals and the performance is irrelevant to radio frequency (RF) impairments in transmit chain. Next, we study a few protocols for STR systems in carrier sense multiple access (CSMA) network and investigate MAC level throughput with realistic assumptions in both single cell and multiple cells. We show that STR can reduce hidden node problem in CSMA network and produce gains of up to 279% in maximum throughput in such networks. Finally, we investigate the application of STR in cellular systems and study two new unique interferences introduced to the system due to STR, namely BS-BS interference and UE-UE interference. We show that these two new interferences will hugely degrade system performance if not treated appropriately. We propose novel methods to reduce both interferences and investigate the performances in system level.Comment: 20 pages. This manuscript will appear in the IEEE Transactions on Wireless Communication

    Full-duplex MAC Protocol Design and Analysis

    Full text link
    The idea of in-band full-duplex (FD) communications revives in recent years owing to the significant progress in the self-interference cancellation and hardware design techniques, offering the potential to double spectral efficiency. The adaptations in upper layers are highly demanded in the design of FD communication systems. In this letter, we propose a novel medium access control (MAC) using FD techniques that allows transmitters to monitor the channel usage while transmitting, and backoff as soon as collision happens. Analytical saturation throughput of the FD-MAC protocol is derived with the consideration of imperfect sensing brought by residual self- interference (RSI) in the PHY layer. Both analytical and simulation results indicate that the normalized saturation throughput of the proposed FD-MAC can significantly outperforms conventional CSMA/CA under various network conditions

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Link Scheduling Algorithms For In-Band Full-Duplex Wireless Networks

    Get PDF
    In the last two decades, wireless networks and their corresponding data traffic have grown significantly. This is because wireless networks have become an indispens- able and critical communication infrastructure in a modern society. An on-going challenge in communication systems is meeting the continuous increase in traffic de- mands. This is driven by the proliferation of electronic devices such as smartphones with a WiFi interface along with their bandwidth intensive applications. Moreover, in the near future, sensor devices that form the Internet of Things (IoTs) ecosystem will also add to future traffic growth. One promising approach to meet growing traffic demands is to equip nodes with an In-band-Full-Duplex (IBFD) radio. This radio thus allows nodes to transmit and receive data concurrently over the same frequency band. Another approach to in- crease network or link capacity is to exploit the benefits of Multiple-Input-Multiple- Output (MIMO) technologies; namely, (i) spatial diversity gain, which improves Signal-to-Noise Ratio (SNR) and thus has a direct impact on the data rate used by nodes, and (ii) spatial multiplexing gain, whereby nodes are able to form concurrent links to neighbors

    Communication Networks of Visible Light Emitting Diodes with Intra-Frame Bidirectional Transmission

    Full text link
    • …
    corecore