238,232 research outputs found
Hardware-efficient on-line learning through pipelined truncated-error backpropagation in binary-state networks
Artificial neural networks (ANNs) trained using backpropagation are powerful
learning architectures that have achieved state-of-the-art performance in
various benchmarks. Significant effort has been devoted to developing custom
silicon devices to accelerate inference in ANNs. Accelerating the training
phase, however, has attracted relatively little attention. In this paper, we
describe a hardware-efficient on-line learning technique for feedforward
multi-layer ANNs that is based on pipelined backpropagation. Learning is
performed in parallel with inference in the forward pass, removing the need for
an explicit backward pass and requiring no extra weight lookup. By using binary
state variables in the feedforward network and ternary errors in
truncated-error backpropagation, the need for any multiplications in the
forward and backward passes is removed, and memory requirements for the
pipelining are drastically reduced. Further reduction in addition operations
owing to the sparsity in the forward neural and backpropagating error signal
paths contributes to highly efficient hardware implementation. For
proof-of-concept validation, we demonstrate on-line learning of MNIST
handwritten digit classification on a Spartan 6 FPGA interfacing with an
external 1Gb DDR2 DRAM, that shows small degradation in test error performance
compared to an equivalently sized binary ANN trained off-line using standard
back-propagation and exact errors. Our results highlight an attractive synergy
between pipelined backpropagation and binary-state networks in substantially
reducing computation and memory requirements, making pipelined on-line learning
practical in deep networks.Comment: Now also consider 0/1 binary activations. Memory access statistics
reporte
Linear Transformations for Randomness Extraction
Information-efficient approaches for extracting randomness from imperfect
sources have been extensively studied, but simpler and faster ones are required
in the high-speed applications of random number generation. In this paper, we
focus on linear constructions, namely, applying linear transformation for
randomness extraction. We show that linear transformations based on sparse
random matrices are asymptotically optimal to extract randomness from
independent sources and bit-fixing sources, and they are efficient (may not be
optimal) to extract randomness from hidden Markov sources. Further study
demonstrates the flexibility of such constructions on source models as well as
their excellent information-preserving capabilities. Since linear
transformations based on sparse random matrices are computationally fast and
can be easy to implement using hardware like FPGAs, they are very attractive in
the high-speed applications. In addition, we explore explicit constructions of
transformation matrices. We show that the generator matrices of primitive BCH
codes are good choices, but linear transformations based on such matrices
require more computational time due to their high densities.Comment: 2 columns, 14 page
Power Optimizations in MTJ-based Neural Networks through Stochastic Computing
Artificial Neural Networks (ANNs) have found widespread applications in tasks
such as pattern recognition and image classification. However, hardware
implementations of ANNs using conventional binary arithmetic units are
computationally expensive, energy-intensive and have large area overheads.
Stochastic Computing (SC) is an emerging paradigm which replaces these
conventional units with simple logic circuits and is particularly suitable for
fault-tolerant applications. Spintronic devices, such as Magnetic Tunnel
Junctions (MTJs), are capable of replacing CMOS in memory and logic circuits.
In this work, we propose an energy-efficient use of MTJs, which exhibit
probabilistic switching behavior, as Stochastic Number Generators (SNGs), which
forms the basis of our NN implementation in the SC domain. Further, error
resilient target applications of NNs allow us to introduce Approximate
Computing, a framework wherein accuracy of computations is traded-off for
substantial reductions in power consumption. We propose approximating the
synaptic weights in our MTJ-based NN implementation, in ways brought about by
properties of our MTJ-SNG, to achieve energy-efficiency. We design an algorithm
that can perform such approximations within a given error tolerance in a
single-layer NN in an optimal way owing to the convexity of the problem
formulation. We then use this algorithm and develop a heuristic approach for
approximating multi-layer NNs. To give a perspective of the effectiveness of
our approach, a 43% reduction in power consumption was obtained with less than
1% accuracy loss on a standard classification problem, with 26% being brought
about by the proposed algorithm.Comment: Accepted in the 2017 IEEE/ACM International Conference on Low Power
Electronics and Desig
Secure exchange of information by synchronization of neural networks
A connection between the theory of neural networks and cryptography is
presented. A new phenomenon, namely synchronization of neural networks is
leading to a new method of exchange of secret messages. Numerical simulations
show that two artificial networks being trained by Hebbian learning rule on
their mutual outputs develop an antiparallel state of their synaptic weights.
The synchronized weights are used to construct an ephemeral key exchange
protocol for a secure transmission of secret data. It is shown that an opponent
who knows the protocol and all details of any transmission of the data has no
chance to decrypt the secret message, since tracking the weights is a hard
problem compared to synchronization. The complexity of the generation of the
secure channel is linear with the size of the network.Comment: 11 pages, 5 figure
- …
