238,232 research outputs found

    Hardware-efficient on-line learning through pipelined truncated-error backpropagation in binary-state networks

    Get PDF
    Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks.Comment: Now also consider 0/1 binary activations. Memory access statistics reporte

    Linear Transformations for Randomness Extraction

    Get PDF
    Information-efficient approaches for extracting randomness from imperfect sources have been extensively studied, but simpler and faster ones are required in the high-speed applications of random number generation. In this paper, we focus on linear constructions, namely, applying linear transformation for randomness extraction. We show that linear transformations based on sparse random matrices are asymptotically optimal to extract randomness from independent sources and bit-fixing sources, and they are efficient (may not be optimal) to extract randomness from hidden Markov sources. Further study demonstrates the flexibility of such constructions on source models as well as their excellent information-preserving capabilities. Since linear transformations based on sparse random matrices are computationally fast and can be easy to implement using hardware like FPGAs, they are very attractive in the high-speed applications. In addition, we explore explicit constructions of transformation matrices. We show that the generator matrices of primitive BCH codes are good choices, but linear transformations based on such matrices require more computational time due to their high densities.Comment: 2 columns, 14 page

    Power Optimizations in MTJ-based Neural Networks through Stochastic Computing

    Full text link
    Artificial Neural Networks (ANNs) have found widespread applications in tasks such as pattern recognition and image classification. However, hardware implementations of ANNs using conventional binary arithmetic units are computationally expensive, energy-intensive and have large area overheads. Stochastic Computing (SC) is an emerging paradigm which replaces these conventional units with simple logic circuits and is particularly suitable for fault-tolerant applications. Spintronic devices, such as Magnetic Tunnel Junctions (MTJs), are capable of replacing CMOS in memory and logic circuits. In this work, we propose an energy-efficient use of MTJs, which exhibit probabilistic switching behavior, as Stochastic Number Generators (SNGs), which forms the basis of our NN implementation in the SC domain. Further, error resilient target applications of NNs allow us to introduce Approximate Computing, a framework wherein accuracy of computations is traded-off for substantial reductions in power consumption. We propose approximating the synaptic weights in our MTJ-based NN implementation, in ways brought about by properties of our MTJ-SNG, to achieve energy-efficiency. We design an algorithm that can perform such approximations within a given error tolerance in a single-layer NN in an optimal way owing to the convexity of the problem formulation. We then use this algorithm and develop a heuristic approach for approximating multi-layer NNs. To give a perspective of the effectiveness of our approach, a 43% reduction in power consumption was obtained with less than 1% accuracy loss on a standard classification problem, with 26% being brought about by the proposed algorithm.Comment: Accepted in the 2017 IEEE/ACM International Conference on Low Power Electronics and Desig

    Secure exchange of information by synchronization of neural networks

    Full text link
    A connection between the theory of neural networks and cryptography is presented. A new phenomenon, namely synchronization of neural networks is leading to a new method of exchange of secret messages. Numerical simulations show that two artificial networks being trained by Hebbian learning rule on their mutual outputs develop an antiparallel state of their synaptic weights. The synchronized weights are used to construct an ephemeral key exchange protocol for a secure transmission of secret data. It is shown that an opponent who knows the protocol and all details of any transmission of the data has no chance to decrypt the secret message, since tracking the weights is a hard problem compared to synchronization. The complexity of the generation of the secure channel is linear with the size of the network.Comment: 11 pages, 5 figure
    corecore