4 research outputs found
New Battery Technology Concepts Based on Semi-Solid Electrodes
El objetivo general de esta Tesis es desarrollar soluciones de baterías innovadoras basadas
en electrodos semi-sólidos y demostrar su viabilidad en diferentes aplicaciones. En
particular, las propiedades únicas de los electrodos semisólidos se explotan en diversas
tecnologías: baterías de ion litio, baterías Zn - MnO2, baterías Zn - aire y “Electrochemical
Ion Pumping”.
Comprender la naturaleza de los electrodos semisólidos es de suma importancia para esta
tesis. Al evaluar la viscosidad de los electrodos, se demostró su naturaleza tixotrópica.
Esto hace posible inyectar esto electrodos dentro de una celda preensamblada. Además,
las propiedades iónicas y eléctricas de diferentes formulaciones de electrodos semisólidos se investigan a través de espectroscopía de impedancia electroquímica,
demostrando la posibilidad de ajustar las propiedades cambiando su composición:
contenido de carbón, electrolito y aditivos.
La batería inyectable, en la que los materiales de los electrodos positivo y negativo no
están fijados en un colector de corriente, se propone por primera vez como un concepto
innovador para facilitar el proceso de reciclaje, permitiendo la reutilización de las celdas
de la batería completa. La prueba de concepto se muestra para baterías inyectables
acuosas, así como su viabilidad en baterías inyectables no acuosas.
En este trabajo, se explora la posibilidad de lograr baterías de alta densidad energética
basadas en electrodos semisólidos de Zn-MnO2. Como solución para investigar
electrodos semi-sólidos de MnO2, un innovador sistema híbrido que combina flujo (lado
negativo) y electrodo inyectable (lado positivo) permite ampliar la vida útil de la batería.
Adicionalmente, se investigan los cambios de pH que ocurren dentro del electrolito y que
afectan al funcionamiento de la batería. La reacción espontánea entre zinc metálico y el
electrolito conduce a la evolución de iones de Zn e hidrógeno, desplazando el pH del
electrolito hacia condiciones alcalinas, lo que a su vez dificulta las reacciones
electroquímicas reversibles en los electrodos positivo y negativo. La reacción de
evolución de oxígeno (OER) en el electrodo positivo se propone como una estrategia
simple para restaurar el pH inicial con un protocolo de carga. Curiosamente, el Mn2+
disuelto en el electrolito como aditivo, juega un papel importante en la corrección del pH.
Usando un indicador de pH disuelto en el electrolito, el efecto del voltaje flotante se
evalúa in operando, lo que permite optimizar su valor para que el pH se mantenga estable.
En esta Tesis, se proponen electrodos semi-sólidos de Zn para revivir el concepto de una
batería alcalina de Zn-aire mecánicamente recargable, en la que los electrodos negativos
gastados se sustituyen al final del proceso de descarga. En este estudio, se alcanzan
elevadas densidades de energía con una tasa de utilización del material del 85 %. De esta
manera, los electrodos semisólidos de Zn se convierten en un tipo de portador de energía
verde, ya que pueden generarse en otros lugares utilizando fuentes renovables,
almacenarse, transportarse y usarse fácilmente para producir electricidad.
La última tecnología en la que se implementan electrodos semi-sólidos es el denominado
“Electrochemical Ion Pumping Cell” (EIPC) para la extracción de Li. Se propone por
primera vez un nuevo concepto de EIPC basado en el uso de electrodos semisólidos,
permitiendo una regeneración sencilla y económica después de llegar a su fin de vida.
Siguiendo esta idea, se realiza una prueba de concepto de una regeneración efectiva del
sistema mediante el simple reemplazo del electrodo semisólido. Los resultados muestran
que EIPC demostró un buen desempeño electroquímico junto con una separación de iones
competitiva, incluso para una solución que emula las salmueras típicas de Atacama.Energy Storage Systems have become essential element in our modern society as power
source for number for applications ranging from power electronics to buffering energy
for implementing energy generated from intermittent renewable sources. Among the
various energy storage systems, batteries are attracting increasing attention since they
offer a good compromise of energy efficiency, energy density and cost. Thus, a variety
of battery technologies have been developed over the last decades with the aim of
improving their key performance indicators (KPIs). Despite the great efforts devoted to
this field, many challenges remain in terms of sustainability, energy and power density,
eco-friendliness, recyclability, etc.
The overall aim of this Thesis is to develop innovative battery solutions based on semisolid electrodes and demonstrate their feasibility in different applications. In particular,
the unique properties of semi-solid electrodes are exploited in various technologies, i.e.
lithium-ion batteries, zinc – manganese dioxide batteries, zinc – air batteries and
electrochemical ion pumping system. These properties are easily tunable by changing the
formulation of different semi-solid electrodes (rheology, ionic conductivity, and electrical
conductivity), and the design of new battery cells prototypes
Batteries - Technology Development Report 2020
This Batteries Technology Development 2020 presents an assessment of the state of the art, development trends, targets, technological barriers and research and innovation needs for all solid state Li-ion batteries with lithium metal anodes, lithium-sulphur and sodium-ion batteries as well as redox flow batteries with organic shuttles. Particular attention is paid to how Horizon 2020 funded projects contributed to technology advancements. The report includes an overview of Member States' activities, most relevant international programmes as well as a patent landscape study for the latter three battery technologies.JRC.C.2 - Energy Efficiency and Renewable
Recent Development of Hybrid Renewable Energy Systems
Abstract: The use of renewable energies continues to increase. However, the energy obtained from renewable resources is variable over time. The amount of energy produced from the renewable energy sources (RES) over time depends on the meteorological conditions of the region chosen, the season, the relief, etc. So, variable power and nonguaranteed energy produced by renewable sources implies intermittence of the grid. The key lies in supply sources integrated to a hybrid system (HS)
Towards a circular economy: fabrication and characterization of biodegradable plates from sugarcane waste
Bagasse pulp is a promising material to produce biodegradable plates. Bagasse is the fibrous residue that remains after sugarcane stalks are crushed to extract their juice. It is a renewable resource and is widely available in many countries, making it an attractive alternative to traditional plastic plates. Recent research has shown that biodegradable plates made from Bagasse pulp have several advantages over traditional plastic plates. For example, they are more environmentally friendly because they are made from renewable resources and can be composted after use. Additionally, they are safer for human health because they do not contain harmful chemicals that can leach into food. The production process for Bagasse pulp plates is also relatively simple and cost-effective. Bagasse is first collected and then processed to remove impurities and extract the pulp. The pulp is then molded into the desired shape and dried to form a sturdy plate. Overall, biodegradable plates made from Bagasse pulp are a promising alternative to traditional plastic plates. They are environmentally friendly, safe for human health, and cost-effective to produce. As such, they have the potential to play an important role in reducing plastic waste and promoting sustainable practices. Over the years, the world was not paying strict attention to the impact of rapid growth in plastic use. As a result, uncontrollable volumes of plastic garbage have been released into the environment. Half of all plastic garbage generated worldwide is made up of packaging materials. The purpose of this article is to offer an alternative by creating bioplastic goods that can be produced in various shapes and sizes across various sectors, including food packaging, single-use tableware, and crafts. Products made from bagasse help address the issue of plastic pollution. To find the optimum option for creating bagasse-based biodegradable dinnerware in Egypt and throughout the world, researchers tested various scenarios. The findings show that bagasse pulp may replace plastics in biodegradable packaging. As a result of this value-added utilization of natural fibers, less waste and less of it ends up in landfills. The practical significance of this study is to help advance low-carbon economic solutions and to produce secure bioplastic materials that can replace Styrofoam in tableware and food packaging production
