4,178 research outputs found

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Keyword-aware Optimal Route Search

    Full text link
    Identifying a preferable route is an important problem that finds applications in map services. When a user plans a trip within a city, the user may want to find "a most popular route such that it passes by shopping mall, restaurant, and pub, and the travel time to and from his hotel is within 4 hours." However, none of the algorithms in the existing work on route planning can be used to answer such queries. Motivated by this, we define the problem of keyword-aware optimal route query, denoted by KOR, which is to find an optimal route such that it covers a set of user-specified keywords, a specified budget constraint is satisfied, and an objective score of the route is optimal. The problem of answering KOR queries is NP-hard. We devise an approximation algorithm OSScaling with provable approximation bounds. Based on this algorithm, another more efficient approximation algorithm BucketBound is proposed. We also design a greedy approximation algorithm. Results of empirical studies show that all the proposed algorithms are capable of answering KOR queries efficiently, while the BucketBound and Greedy algorithms run faster. The empirical studies also offer insight into the accuracy of the proposed algorithms.Comment: VLDB201
    • …
    corecore