23,140 research outputs found

    2D materials and van der Waals heterostructures

    Full text link
    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With new 2D materials, truly 2D physics has started to appear (e.g. absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc). Novel heterostructure devices are also starting to appear - tunneling transistors, resonant tunneling diodes, light emitting diodes, etc. Composed from individual 2D crystals, such devices utilize the properties of those crystals to create functionalities that are not accessible to us in other heterostructures. We review the properties of novel 2D crystals and how their properties are used in new heterostructure devices

    High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures

    Get PDF
    We report experimental measurements for ultrathin (< 15 nm) van der Waals heterostructures exhibiting external quantum efficiencies exceeding 50%, and show that these structures can achieve experimental absorbance > 90%. By coupling electromagnetic simulations and experimental measurements, we show that pn WSe2/MoS2 heterojunctions with vertical carrier collection can have internal photocarrier collection efficiencies exceeding 70%.Comment: ACS Nano, 2017. Manuscript (25 pages, 7 figures) plus supporting information (7 pages, 4 figures
    corecore