4 research outputs found

    Discovering Organizational Correlations from Twitter

    Full text link
    Organizational relationships are usually very complex in real life. It is difficult or impossible to directly measure such correlations among different organizations, because important information is usually not publicly available (e.g., the correlations of terrorist organizations). Nowadays, an increasing amount of organizational information can be posted online by individuals and spread instantly through Twitter. Such information can be crucial for detecting organizational correlations. In this paper, we study the problem of discovering correlations among organizations from Twitter. Mining organizational correlations is a very challenging task due to the following reasons: a) Data in Twitter occurs as large volumes of mixed information. The most relevant information about organizations is often buried. Thus, the organizational correlations can be scattered in multiple places, represented by different forms; b) Making use of information from Twitter collectively and judiciously is difficult because of the multiple representations of organizational correlations that are extracted. In order to address these issues, we propose multi-CG (multiple Correlation Graphs based model), an unsupervised framework that can learn a consensus of correlations among organizations based on multiple representations extracted from Twitter, which is more accurate and robust than correlations based on a single representation. Empirical study shows that the consensus graph extracted from Twitter can capture the organizational correlations effectively.Comment: 11 pages, 4 figure

    Relation Strength-Aware Clustering of Heterogeneous Information Networks with Incomplete Attributes

    Full text link
    With the rapid development of online social media, online shopping sites and cyber-physical systems, heterogeneous information networks have become increasingly popular and content-rich over time. In many cases, such networks contain multiple types of objects and links, as well as different kinds of attributes. The clustering of these objects can provide useful insights in many applications. However, the clustering of such networks can be challenging since (a) the attribute values of objects are often incomplete, which implies that an object may carry only partial attributes or even no attributes to correctly label itself; and (b) the links of different types may carry different kinds of semantic meanings, and it is a difficult task to determine the nature of their relative importance in helping the clustering for a given purpose. In this paper, we address these challenges by proposing a model-based clustering algorithm. We design a probabilistic model which clusters the objects of different types into a common hidden space, by using a user-specified set of attributes, as well as the links from different relations. The strengths of different types of links are automatically learned, and are determined by the given purpose of clustering. An iterative algorithm is designed for solving the clustering problem, in which the strengths of different types of links and the quality of clustering results mutually enhance each other. Our experimental results on real and synthetic data sets demonstrate the effectiveness and efficiency of the algorithm.Comment: VLDB201
    corecore