2 research outputs found

    AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue with Lightweight AI and Edge Computing

    Full text link
    Rescue vessels are the main actors in maritime safety and rescue operations. At the same time, aerial drones bring a significant advantage into this scenario. This paper presents the research directions of the AutoSOS project, where we work in the development of an autonomous multi-robot search and rescue assistance platform capable of sensor fusion and object detection in embedded devices using novel lightweight AI models. The platform is meant to perform reconnaissance missions for initial assessment of the environment using novel adaptive deep learning algorithms that efficiently use the available sensors and computational resources on drones and rescue vessel. When drones find potential objects, they will send their sensor data to the vessel to verity the findings with increased accuracy. The actual rescue and treatment operation are left as the responsibility of the rescue personnel. The drones will autonomously reconfigure their spatial distribution to enable multi-hop communication, when a direct connection between a drone transmitting information and the vessel is unavailable

    Collaborative Multi-Robot Systems for Search and Rescue: Coordination and Perception

    Full text link
    Autonomous or teleoperated robots have been playing increasingly important roles in civil applications in recent years. Across the different civil domains where robots can support human operators, one of the areas where they can have more impact is in search and rescue (SAR) operations. In particular, multi-robot systems have the potential to significantly improve the efficiency of SAR personnel with faster search of victims, initial assessment and mapping of the environment, real-time monitoring and surveillance of SAR operations, or establishing emergency communication networks, among other possibilities. SAR operations encompass a wide variety of environments and situations, and therefore heterogeneous and collaborative multi-robot systems can provide the most advantages. In this paper, we review and analyze the existing approaches to multi-robot SAR support, from an algorithmic perspective and putting an emphasis on the methods enabling collaboration among the robots as well as advanced perception through machine vision and multi-agent active perception. Furthermore, we put these algorithms in the context of the different challenges and constraints that various types of robots (ground, aerial, surface or underwater) encounter in different SAR environments (maritime, urban, wilderness or other post-disaster scenarios). This is, to the best of our knowledge, the first review considering heterogeneous SAR robots across different environments, while giving two complimentary points of view: control mechanisms and machine perception. Based on our review of the state-of-the-art, we discuss the main open research questions, and outline our insights on the current approaches that have potential to improve the real-world performance of multi-robot SAR systems
    corecore