39,852 research outputs found

    Hybrid Collaborative Filtering with Autoencoders

    Get PDF
    Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the well-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework

    Hete-CF: Social-Based Collaborative Filtering Recommendation using Heterogeneous Relations

    Full text link
    Collaborative filtering algorithms haven been widely used in recommender systems. However, they often suffer from the data sparsity and cold start problems. With the increasing popularity of social media, these problems may be solved by using social-based recommendation. Social-based recommendation, as an emerging research area, uses social information to help mitigate the data sparsity and cold start problems, and it has been demonstrated that the social-based recommendation algorithms can efficiently improve the recommendation performance. However, few of the existing algorithms have considered using multiple types of relations within one social network. In this paper, we investigate the social-based recommendation algorithms on heterogeneous social networks and proposed Hete-CF, a Social Collaborative Filtering algorithm using heterogeneous relations. Distinct from the exiting methods, Hete-CF can effectively utilize multiple types of relations in a heterogeneous social network. In addition, Hete-CF is a general approach and can be used in arbitrary social networks, including event based social networks, location based social networks, and any other types of heterogeneous information networks associated with social information. The experimental results on two real-world data sets, DBLP (a typical heterogeneous information network) and Meetup (a typical event based social network) show the effectiveness and efficiency of our algorithm

    Hete-CF : Social-Based Collaborative Filtering Recommendation using Heterogeneous Relations

    Get PDF
    The work described here was funded by the National Natural Science Foundation of China (NSFC) under Grant No. 61373051; the National Science and Technology Pillar Program (Grant No.2013BAH07F05), the Key Laboratory for Symbolic Computation and Knowledge Engineering, Ministry of Education, China, and the UK Economic & Social Research Council (ESRC); award reference: ES/M001628/1.Preprin

    Deep Heterogeneous Autoencoders for Collaborative Filtering

    Full text link
    This paper leverages heterogeneous auxiliary information to address the data sparsity problem of recommender systems. We propose a model that learns a shared feature space from heterogeneous data, such as item descriptions, product tags and online purchase history, to obtain better predictions. Our model consists of autoencoders, not only for numerical and categorical data, but also for sequential data, which enables capturing user tastes, item characteristics and the recent dynamics of user preference. We learn the autoencoder architecture for each data source independently in order to better model their statistical properties. Our evaluation on two MovieLens datasets and an e-commerce dataset shows that mean average precision and recall improve over state-of-the-art methods.Comment: Proceedings of the IEEE International Conference on Data Mining, pp. 1164-1169, Singapore, 201

    Deriving item features relevance from collaborative domain knowledge

    Get PDF
    An Item based recommender system works by computing a similarity between items, which can exploit past user interactions (collaborative filtering) or item features (content based filtering). Collaborative algorithms have been proven to achieve better recommendation quality then content based algorithms in a variety of scenarios, being more effective in modeling user behaviour. However, they can not be applied when items have no interactions at all, i.e. cold start items. Content based algorithms, which are applicable to cold start items, often require a lot of feature engineering in order to generate useful recommendations. This issue is specifically relevant as the content descriptors become large and heterogeneous. The focus of this paper is on how to use a collaborative models domain-specific knowledge to build a wrapper feature weighting method which embeds collaborative knowledge in a content based algorithm. We present a comparative study for different state of the art algorithms and present a more general model. This machine learning approach to feature weighting shows promising results and high flexibility

    Learning over Knowledge-Base Embeddings for Recommendation

    Full text link
    State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely neglected recently due to the availability of vast amount of data, and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors. A great challenge for using knowledge bases for recommendation is how to integrated large-scale structured and unstructured data, while taking advantage of collaborative filtering for highly accurate performance. Recent achievements on knowledge base embedding sheds light on this problem, which makes it possible to learn user and item representations while preserving the structure of their relationship with external knowledge. In this work, we propose to reason over knowledge base embeddings for personalized recommendation. Specifically, we propose a knowledge base representation learning approach to embed heterogeneous entities for recommendation. Experimental results on real-world dataset verified the superior performance of our approach compared with state-of-the-art baselines
    corecore