3 research outputs found

    2PFC (Two Pixels, Full Color): Image Sensor Demosaicing and Characterization

    Get PDF
    We propose a modification to the standard Bayer CFA and photodiode structure for CMOS image sensors, which we call 2PFC (Two Pixels, Full Color). The blue and red filters of the Bayer pattern are replaced by a magenta filter. Under each magenta filter are two stacked, pinned photodiodes; the diode nearest the surface absorbs mostly blue light and the deeper diode absorbs mostly red light. The magenta filter absorbs green light, improving color separation between the blue and red diodes. We first present a frequency-based demosaicing method, which takes advantage of the new 2PFC geometry. Due to the spatial arrangement of red, green, and blue pixels, luminance and chrominance are very well separated in the Fourier space, allowing for computationally inexpensive linear filtering. In comparison with state-of-the-art demosaicing methods for the Bayer CFA, we show that our sensor and demosaicing method outperform the others in terms of color aliasing, PSNR, and zipper effect. As demosaicing alone does not determine image quality, we also analyze the whole system performance in terms of resolution and noise

    Heterogeneity-Projection Hard-Decision Color Interpolation Using Spectral-Spatial Correlation

    No full text
    [[abstract]]This paper presents a novel heterogeneity-projection hard-decision (HPHD) color interpolation procedure for reproduction of Bayer mosaic images. The proposed algorithm aims to estimate the optimal interpolation direction and perform hard-decision interpolation, in which each pixel only needs to be interpolated once. A new heterogeneity-projection scheme based on a novel spectral-spatial correlation concept is proposed to estimate the best interpolation direction directly from the original mosaic image. Using the proposed heterogeneity-projection scheme, a hard-decision rule can be decided before performing the interpolation. The advantage of this scheme is that it provides an efficient way for decision-based algorithms to generate improved results using fewer computations. Compared with three recently reported demosaicing techniques, Gunturk's, Lu's, and Li's methods, the proposed HPHD outperforms all of them in both PSNR values and S-CIELAB DeltaEab * measures by utilizing 25 natural images from Kodak PhotoCD[[notice]]補正完畢[[incitationindex]]SC
    corecore