7,829 research outputs found

    HPS-HDS:High Performance Scheduling for Heterogeneous Distributed Systems

    Get PDF
    Heterogeneous Distributed Systems (HDS) are often characterized by a variety of resources that may or may not be coupled with specific platforms or environments. Such type of systems are Cluster Computing, Grid Computing, Peer-to-Peer Computing, Cloud Computing and Ubiquitous Computing all involving elements of heterogeneity, having a large variety of tools and software to manage them. As computing and data storage needs grow exponentially in HDS, increasing the size of data centers brings important diseconomies of scale. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance. More, HDS are highly dynamic in its structure, because the user requests must be respected as an agreement rule (SLA) and ensure QoS, so new algorithm for events and tasks scheduling and new methods for resource management should be designed to increase the performance of such systems. In this special issues, the accepted papers address the advance on scheduling algorithms, energy-aware models, self-organizing resource management, data-aware service allocation, Big Data management and processing, performance analysis and optimization

    Adaptive Dispatching of Tasks in the Cloud

    Full text link
    The increasingly wide application of Cloud Computing enables the consolidation of tens of thousands of applications in shared infrastructures. Thus, meeting the quality of service requirements of so many diverse applications in such shared resource environments has become a real challenge, especially since the characteristics and workload of applications differ widely and may change over time. This paper presents an experimental system that can exploit a variety of online quality of service aware adaptive task allocation schemes, and three such schemes are designed and compared. These are a measurement driven algorithm that uses reinforcement learning, secondly a "sensible" allocation algorithm that assigns jobs to sub-systems that are observed to provide a lower response time, and then an algorithm that splits the job arrival stream into sub-streams at rates computed from the hosts' processing capabilities. All of these schemes are compared via measurements among themselves and with a simple round-robin scheduler, on two experimental test-beds with homogeneous and heterogeneous hosts having different processing capacities.Comment: 10 pages, 9 figure
    • …
    corecore