20,616 research outputs found

    Experimental comparison of autodyne and heterodyne laser interferometry using a Nd:YVO4 microchip laser

    Full text link
    Using a Nd:YVO4 microchip laser with a relaxation frequency in the megahertz range, we have experimentally compared a heterodyne interferometer based on a Michelson configuration with an autodyne interferometer based on the laser optical feedback imaging (LOFI) method regarding their signal to noise ratios. In the heterodyne configuration, the beating between the reference beam and the signal beam is realized outside the laser cavity while in the autodyne configuration, the wave beating takes place inside the laser cavity and the relaxation oscillations of the laser intensity then play an important part. For a given laser output power, object under investigation and detection noise level, we have determined the amplification gain of the LOFI interferometer compared to the heterodyne interferometer. LOFI interferometry is demonstrated to show higher performances than heterodyne interferometry for a wide range of laser power and detection level of noise. The experimental results are in good agreement with the theoretical predictions

    Simulated electronic heterodyne recording and processing of pulsed-laser holograms

    Get PDF
    The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms

    A broadband RF continuously variable time delay device

    Get PDF
    A method for implementation of continuously variable time delay of broadband RF signals is described. The method uses Bragg Cell and optical heterodyne technology. The signal to be delayed is applied to the Bragg Cell acoustic transducer, and the delay time is the acoustic transit time from this transducer to the incident light beam. By translating the light beam, the delay is varied. Expressions describing the Bragg Cell diffraction, lens Fourier transformation, and the optical heterodyne processes are developed. Specifications for the variable delay including bandwidth, range of delay, and insertion loss are provided. Applications include radar signal processing, spread spectrum intercept, radar ECM, and adaptive array antenna processing

    Heterodyne Holography with full control of both signal and reference arms

    Full text link
    Heterodyne holography is a variant of phase shifting holography in which reference and signal arms are controlled by acousto optic modulators. In this review paper, we will briefy describe the method and its properties, and we will illustrate its advantages in experimental applications

    Quantum Noise of Kramers-Kronig Receiver

    Full text link
    Abstrac--Kramers-Kronig (KK) receiver, which is equivalent to heterodyne detection with one single photodetector, provides an efficient method to reconstruct the complex-valued optical field by means of intensity detection given a minimum-phase signal. In this paper, quantum noise of the KK receiver is derived analytically and compared with that of the balanced heterodyne detection. We show that the quantum noise of the KK receiver keeps the radical fluctuation of the measured signal the same as that of the balanced heterodyne detection, while compressing the tangential noise to 1/3 times the radical one using the information provided by the Hilbert transform. In consequence, the KK receiver has 3/2 times the signal-to-noise ratio of balanced heterodyne detection while presenting an asymmetric distribution of fluctuations, which is also different from that of the latter. More interestingly, the projected in-phase and quadrature field operators of the retrieved signal after down conversion have a time dependent quantum noise distribution depending on the time-varying phase. This property provides a feasible scheme for controlling the fluctuation distribution according to the requirements of measurement accuracy in the specific direction. Under the condition of strong carrier wave, the fluctuations of the component requiring to be measured more accurately can be compressed to 1 / 6, which is even lower than 1/4 by measuring a coherent state. Finally, we prove the analytic conclusions by simulation results

    Defocus restoration for a full-field heterodyne ranger via multiple return separation

    Get PDF
    Full-field heterodyne time-of-flight range-imagers allow a large number of range measurements to be taken simultaneously across an entire scene; these range measurements may be corrupted due to limited depth of field. We propose a new method for deblurring heterodyne range images by identifying multiple signal returns within each pixel via deconvolution, thus reducing the spatially variant deblurring problem to a sequence of spatially invariant deconvolutions. We have applied this method to simulated data, showing significant improvement in the restored images
    corecore