54,606 research outputs found

    Mechanism of unidirectional movement of kinesin motors

    Full text link
    Kinesin motors have been studied extensively both experimentally and theoretically. However, the microscopic mechanism of the processive movement of kinesin is still an open question. In this paper, we propose a hand-over-hand model for the processivity of kinesin, which is based on chemical, mechanical, and electrical couplings. In the model the processive movement does not need to rely on the two heads' coordination in their ATP hydrolysis and mechanical cycles. Rather, the ATP hydrolyses at the two heads are independent. The much higher ATPase rate at the trailing head than the leading head makes the motor walk processively in a natural way, with one ATP being hydrolyzed per step. The model is consistent with the structural study of kinesin and the measured pathway of the kinesin ATPase. Using the model the estimated driving force of ~ 5.8 pN is in agreements with the experimental results (5~7.5 pN). The prediction of the moving time in one step (~10 microseconds) is also consistent with the measured values of 0~50 microseconds. The previous observation of substeps within the 8-nm step is explained. The shapes of velocity-load (both positive and negative) curves show resemblance to previous experimental results.Comment: 22 pages, 6 figure

    Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    Full text link
    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N-H...N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment

    pH Dependence and Stoichiometry of Binding to the Fc Region of IgG by the Herpes Simplex Virus Fc Receptor gE-gI

    Get PDF
    Herpes simplex virus type 1 encodes two glycoproteins, gE and gI, that form a heterodimer on the surface of virions and infected cells. The gE-gI heterodimer has been implicated in cell-to-cell spread of virus and is a receptor for the Fc fragment of IgG. Previous studies localized the gE-gI-binding site on human IgG to a region near the interface between the CH2 and CH3 domains of Fc, which also serves as the binding site for bacterial and mammalian Fc receptors. Although there are two potential gE-gI-binding sites per Fc homodimer, only one gE-gI heterodimer binds per IgG in gel filtration experiments. Here we report production of recombinant human Fc molecules that contain zero, one, or two potential gE-gI-binding sites and use them in analytical ultracentrifugation experiments to show that two gE-gI heterodimers can bind to each Fc. Further characterization of the gE-gI interaction with Fc reveals a sharp pH dependence of binding, with KD values of ~340 and ~930 nM for the first and second binding events, respectively, at the slightly basic pH of the cell surface (pH 7.4), but undetectable binding at pH 6.0. This strongly pH-dependent interaction suggests a physiological role for gE-gI dissociation from IgG within acidic intracellular compartments, consistent with a mechanism whereby herpes simplex virus promotes intracellular degradation of anti-viral antibodies

    Requirement for the coexpression of T3 and the T cell antigen receptor on a malignant human T cell line.

    Get PDF
    The association between T3 and the T cell antigen receptor was examined using the T3 bearing T cell leukemic line Jurkat. A monoclonal antibody, C305, was produced, which reacted with idiotypic-like determinants expressed on Jurkat. The molecule with which this antibody reacted was a disulfide-linked heterodimer of 90 kD, composed of polypeptides of 42 and 54 kD. Thus, C305 reacted with a molecule with characteristics of the putative T cell antigen receptor described by others. A series of mutants of Jurkat, induced with ethyl methane sulfonate or radiation, was selected for T3 or antigen receptor negativity. In every instance, there was a concomitant loss of both T3 and the antigen receptor as assessed by quantitative absorption, indirect immunofluorescence, and antibody plus complement-mediated cytotoxicity. The absence of antigen receptor molecules was confirmed on diagonal gels, excluding the possibility that conformational changes of the antigen receptor on such T3-negative mutants were responsible for the failure of such mutants to react with C305. Moreover, in a mutant that expressed a marked decrease in the level of T3 expression, there was a comparable decrease in the expression of antigen receptor determinants. These results suggest that there is an obligate requirement for the coexpression of T3 and the T cell antigen receptor. Furthermore, attempts to activate such mutants with the lectin phytohemagglutinin suggested that the expression of T3 and/or the antigen receptor was required for activation of these cells

    Crystal structure of Hop2-Mnd1 and mechanistic insights into its role in meiotic recombination

    Get PDF
    In meiotic DNA recombination, the Hop2-Mnd1 complex promotes Dmc1-mediated single-stranded DNA (ssDNA) invasion into homologous chromosomes to form a synaptic complex by a yet-unclear mechanism. Here, the crystal structure of Hop2-Mnd1 reveals that it forms a curved rod-like structure consisting of three leucine zippers and two kinked junctions. One end of the rod is linked to two juxtaposed winged-helix domains, and the other end is capped by extra ?-helices to form a helical bundle-like structure. Deletion analysis shows that the helical bundle-like structure is sufficient for interacting with the Dmc1-ssDNA nucleofilament, and molecular modeling suggests that the curved rod could be accommodated into the helical groove of the nucleofilament. Remarkably, the winged-helix domains are juxtaposed at fixed relative orientation, and their binding to DNA is likely to perturb the base pairing according to molecular simulations. These findings allow us to propose a model explaining how Hop2-Mnd1 juxtaposes Dmc1-bound ssDNA with distorted recipient double-stranded DNA and thus facilitates strand invasion

    Characterization of the Interaction between the Herpes Simplex Virus Type I Fc Receptor and Immunoglobulin G

    Get PDF
    Herpes simplex virus type I (HSV-1) virions and HSV-1-infected cells bind to human immunoglobulin G (hIgG) via its Fc region. A complex of two surface glycoproteins encoded by HSV-1, gE and gI, is responsible for Fc binding. We have co-expressed soluble truncated forms of gE and gI in Chinese hamster ovary cells. Soluble gE-gI complexes can be purified from transfected cell supernatants using a purification scheme that is based upon the Fc receptor function of gE-gI. Using gel filtration and analytical ultracentrifugation, we determined that soluble gE-gI is a heterodimer composed of one molecule of gE and one molecule of gI and that gE-gI heterodimers bind hIgG with a 1:1 stoichiometry. Biosensor-based studies of the binding of wild type or mutant IgG proteins to soluble gE-gI indicate that histidine 435 at the CH2-CH3 domain interface of IgG is a critical residue for IgG binding to gE-gI. We observe many similarities between the characteristics of IgG binding by gE-gI and by rheumatoid factors and bacterial Fc receptors such as Staphylococcus aureus protein A. These observations support a model for the origin of some rheumatoid factors, in which they represent anti-idiotypic antibodies directed against antibodies to bacterial and viral Fc receptors

    Vaccinia protein C16 blocks innate immune sensing of DNA by binding the Ku complex

    Get PDF
    VACV gene C16L encodes a 37-kDa protein that is highly conserved in orthopoxviruses and functions as an immunomodulator. Intranasal infection of mice with a virus lacking C16L (vΔC16) induced less weight loss, fewer signs of illness and increased infiltration of leukocytes to the lungs compared with wild-type virus. To understand C16’s mechanism of action, tandem affinity purification and mass spectrometry were used to identify C16 binding partners. This revealed that Ku70, Ku80 and PHD2 interact with C16 in cells. Ku70 and Ku80 constitute the Ku heterodimer, a well characterised DNA repair complex. MEFs lacking Ku, or the other component of the DNA-dependent protein kinase (DNA-PK) complex, the catalytic subunit of DNA-PK (DNA-PKcs), were shown to be deficient in the upregulation of IRF-3-dependent genes such as Cxcl10, Il6 and Ifnb in response to transfection of DNA, but not poly (I:C). Furthermore, following infection of MEFs with VACV strain MVA the activation of Cxcl10 or Il6 transcription was dependent on DNA-PK. Therefore, DNA-PK is a DNA sensor capable of detecting poxvirus DNA and activating IRF-3-dependent innate immunity. C16 inhibited the binding of Ku to DNA, and therefore inhibited DNA-mediated induction of Cxcl10 and Il-6 in MEFs. The role of C16 in vivo was also examined: infection with vΔC16 led to increased production of Cxcl10 and Il-6 following intranasal infection of mice compared with wild-type virus. C16 is therefore an inhibitor of DNA-PK-mediated DNA sensing and innate immune activation. C16 was also shown to bind to PHD2, an enzyme involved in regulation of hypoxic signalling. VACV was found to activate the transcription of hypoxia-related genes, and C16 expression in cells was also capable of doing this. The role of hypoxic signalling in VACV infection remains poorly understood

    μ-calpain binds to lipid bilayers via the exposed hydrophobic surface of its Ca2+-activated conformation

    Get PDF
    μ- and m-calpain are cysteine proteases requiring micro- and millimolar Ca2+ concentrations for their activation in vitro. Among other mechanisms, interaction of calpains with membrane phospholipids has been proposed to facilitate their activation by nanomolar {[}Ca2+] in living cells. Here the interaction of non-autolysing, C115A active-site mutated heterodimeric human μ-calpain with phospholipid bilayers was studied in vitro using protein-to-lipid fluorescence resonance energy transfer and surface plasmon resonance. Binding to liposomes was Ca2+-dependent, but not selective for specific phospholipid. head groups. {[}Ca2+](0.5) for association with lipid bilayers was not lower than that required for the exposure of hydrophobic surface (detected by TNS fluorescence) or for enzyme activity in the absence of lipids. Deletion of domain V reduced the lipid affinity of the isolated small subunit (600-fold) and of the heterodimer (10- to 15-fold), thus confirming the proposed role of domain V for membrane binding. Unexpectedly, mutations in the acidic loop of the `C2-like' domain III, a putative Ca2+ and phospholipid-binding site, did not affect lipid affinity. Taken together, these results support the hypothesis that in vitro membrane binding of μ-calpain is due to the exposed hydrophobic surface of the active conformation and does not reduce the Ca2+ requirement for activation
    corecore