324,692 research outputs found
On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications
The extent to which large scale magnetic fields are susceptible to turbulent
diffusion is important for interpreting the need for in situ large scale
dynamos in astrophysics and for observationally inferring field strengths
compared to kinetic energy. By solving coupled equations for magnetic energy
and magnetic helicity in a system initiated with isotropic turbulence and an
arbitrarily helical large scale field, we quantify the decay rate of the latter
for a bounded or periodic system. The energy associated with the non-helical
magnetic field rapidly decays by turbulent diffusion, but the decay rate of the
helical component depends on whether the ratio of its magnetic energy to the
turbulent kinetic energy exceeds a critical value given by M_{1,c}
=(k_1/k_2)^2, where k_1 and k_2 are the wave numbers of the large and forcing
scales. Turbulently diffusing helical fields to small scales while conserving
magnetic helicity requires a rapid increase in total magnetic energy. As such,
only when the helical fields are sub-critical can they so diffuse. When
super-critical, the large scale helical field decays slowly, at a rate
determined by microphysical dissipation even when macroscopic turbulence is
present. Amplification of small scale magnetic helicity abates the turbulent
diffusion. Two implications are that: (1) Standard arguments supporting the
need for in situ large scale dynamos based on the otherwise rapid turbulent
diffusion of large scale fields require re-thinking since only the non-helical
field is so diffused in a closed system. Boundary terms could however provide
potential pathways for rapid change of the large scale helical field. (2) Since
M_{1,c} <<1 for k_1 << k_2, the presence of long-lived ordered large scale
helical fields, as in extragalactic jets, does not guarantee that the magnetic
field dominates the kinetic energy.Comment: published in MNRAS (in this replacement, the missing .bbl file has
been added
Nonlocal conductance reveals helical superconductors
Helical superconductors form a two dimensional, time-reversal invariant
topological phase characterized by a Kramers pair of Majorana edge modes
(helical Majorana modes). Existing detection schemes to identify this phase
rely either on spin transport properties, which are quite difficult to measure,
or on local charge transport, which allows only a partial identification. Here
we show that the presence of helical Majorana modes can be unambiguously
revealed by measuring the nonlocal charge conductance. Focusing on a
superconducting ring, we suggest two experiments that provide unique and robust
signatures to detect the helical superconductor phase.Comment: 4 pages, 2 figure
Силовий портрет зміни радіального розміру пружно-гвинтового хону
The article discloses the research principle of the deformation of helical spring deformed surface of a helical spring hone taking into consideration the results of theoretical, experimental and computer studies. As a result we got the system of equations which defines linear and angle loads in case deformation which appear on the helical spring surface. The scheme of definition of the torque performance while loading the helical spring deformed surface was suggested. The research enabled to build the force depiction of loads and spring deformation of helical spring deformed surface. We also suggested the scheme of definition of deformation force of the helical spring hone and its metering. В статі розглядається принцип дослідження деформації пружно-деформуємої оболонки пружно-гвинтового хона, враховуючі результати теоретичних, експериментальних та комп’ютерних досліджень. В результаті чого було отримана система рівнянь, яка визначає лінійні і кутові навантаження при деформації, котрі виникають в пружно-деформуємій оболонці. Запропонована схема визначення дії крутного моменту при дії навантажень на пружно-деформуєму оболонку. Проведені дослідження дали змогу побудувати силовий портрет навантажень та пружних деформації пружно-деформуємої оболонки. Також представлена схема визначення сили деформації пружно-гвинтового хону та його заміру
Helical spin textures in dipolar Bose-Einstein condensates
We numerically study elongated helical spin textures in ferromagnetic spin-1
Bose-Einstein condensates subject to dipolar interparticle forces. Stationary
states of the Gross-Pitaevskii equation are solved and analyzed for various
values of the helical wave vector and dipolar coupling strength. We find two
helical spin textures which differ by the nature of their topological defects.
The spin structure hosting a pair of Mermin-Ho vortices with opposite mass
flows and aligned spin currents is stabilized for a nonzero value of the
helical wave vector.Comment: 7 pages, 6 figure
- …
