1,432 research outputs found

    Slowness: An Objective for Spike-Timing-Dependent Plasticity?

    Get PDF
    Slow Feature Analysis (SFA) is an efficient algorithm for learning input-output functions that extract the most slowly varying features from a quickly varying signal. It has been successfully applied to the unsupervised learning of translation-, rotation-, and other invariances in a model of the visual system, to the learning of complex cell receptive fields, and, combined with a sparseness objective, to the self-organized formation of place cells in a model of the hippocampus. In order to arrive at a biologically more plausible implementation of this learning rule, we consider analytically how SFA could be realized in simple linear continuous and spiking model neurons. It turns out that for the continuous model neuron SFA can be implemented by means of a modified version of standard Hebbian learning. In this framework we provide a connection to the trace learning rule for invariance learning. We then show that for Poisson neurons spike-timing-dependent plasticity (STDP) with a specific learning window can learn the same weight distribution as SFA. Surprisingly, we find that the appropriate learning rule reproduces the typical STDP learning window. The shape as well as the timescale are in good agreement with what has been measured experimentally. This offers a completely novel interpretation for the functional role of spike-timing-dependent plasticity in physiological neurons

    Supervised Learning in Multilayer Spiking Neural Networks

    Get PDF
    The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.Comment: 38 pages, 4 figure

    SuperSpike: Supervised learning in multi-layer spiking neural networks

    Full text link
    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in-vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in-silico. Here we revisit the problem of supervised learning in temporally coding multi-layer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three factor learning rule capable of training multi-layer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike-time patterns

    Learning arbitrary functions with spike-timing dependent plasticity learning rule

    Get PDF
    A neural network model based on spike-timing-dependent plasticity (STOP) learning rule, where afferent neurons will excite both the target neuron and interneurons that in turn project to the target neuron, is applied to the tasks of learning AND and XOR functions. Without inhibitory plasticity, the network can learn both AND and XOR functions. Introducing inhibitory plasticity can improve the performance of learning XOR function. Maintaining a training pattern set is a method to get feedback of network performance, and will always improve network performance. © 2005 IEEE
    corecore