416 research outputs found

    Personalized Health Monitoring Using Evolvable Block-based Neural Networks

    Get PDF
    This dissertation presents personalized health monitoring using evolvable block-based neural networks. Personalized health monitoring plays an increasingly important role in modern society as the population enjoys longer life. Personalization in health monitoring considers physiological variations brought by temporal, personal or environmental differences, and demands solutions capable to reconfigure and adapt to specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of modular basic blocks that can be easily implemented using reconfigurable digital hardware such as field programmable gate arrays (FPGAs) that allow on-line partial reorganization. The modular structure of BbNNs enables easy expansion in size by adding more blocks. A computationally efficient evolutionary algorithm is developed that simultaneously optimizes structure and weights of BbNNs. This evolutionary algorithm increases optimization speed by integrating a local search operator. An adaptive rate update scheme removing manual tuning of operator rates enhances the fitness trend compared to pre-determined fixed rates. A fitness scaling with generalized disruptive pressure reduces the possibility of premature convergence. The BbNN platform promises an evolvable solution that changes structures and parameters for personalized health monitoring. A BbNN evolved with the proposed evolutionary algorithm using the Hermite transform coefficients and a time interval between two neighboring R peaks of ECG signal, provides a patient-specific ECG heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia database demonstrate a potential for significant performance enhancements over other major techniques

    Cardiovascular data analytics for real time patient monitoring

    Get PDF
    Improvements in wearable sensor devices make it possible to constantly monitor physiological parameters such as electrocardiograph (ECG) signals for long periods. Remote patient monitoring with wearable sensors has an important role to play in health care, particularly given the prevalence of chronic conditions such as cardiovascular disease (CVD)—one of the prominent causes of morbidity and mortality worldwide. Approximately 4.2 million Australians suffer from long-term CVD with approximately one death every 12 minutes. The assessment of ECG features, especially heart rate variability (HRV), represents a non-invasive technique which provides an indication of the autonomic nervous system (ANS) function. Conditions such as sudden cardiac death, hypertension, heart failure, myocardial infarction, ischaemia, and coronary heart disease can be detected from HRV analysis. In addition, the analysis of ECG features can also be used to diagnose many types of life-threatening arrhythmias, including ventricular fibrillation and ventricular tachycardia. Non-cardiac conditions, such as diabetes, obesity, metabolic syndrome, insulin resistance, irritable bowel syndrome, dyspepsia, anorexia nervosa, anxiety, and major depressive disorder have also been shown to be associated with HRV. The analysis of ECG features from real time ECG signals generated from wearable sensors provides distinctive challenges. The sensors that receive and process the signals have limited power, storage and processing capacity. Consequently, algorithms that process ECG signals need to be lightweight, use minimal storage resources and accurately detect abnormalities so that alarms can be raised. The existing literature details only a few algorithms which operate within the constraints of wearable sensor networks. This research presents four novel techniques that enable ECG signals to be processed within the limitations of resource constraints on devices to detect some key abnormalities in heart function. - The first technique is a novel real-time ECG data reduction algorithm, which detects and transmits only those key points that are critical for the generation of ECG features for diagnoses. - The second technique accurately predicts the five-minute HRV measure using only three minutes of data with an algorithm that executes in real-time using minimal computational resources. - The third technique introduces a real-time ECG feature recognition system that can be applied to diagnose life threatening conditions such as premature ventricular contractions (PVCs). - The fourth technique advances a classification algorithm to enhance the performance of automated ECG classification to determine arrhythmic heart beats based on noisy ECG signals. The four novel techniques are evaluated in comparison with benchmark algorithms for each task on the standard MIT-BIH Arrhythmia Database and with data generated from patients in a major hospital using Shimmer3 wearable ECG sensors. The four techniques are integrated to demonstrate that remote patient monitoring of ECG using HRV and ECG features is feasible in real time using minimal computational resources. The evaluation show that the ECG reduction algorithm is significantly better than existing algorithms that can be applied within sensor nodes, such as time-domain methods, transformation methods and compressed sensing methods. Furthermore, the proposed ECG reduction is found to be computationally less complex for resource constrained sensors and achieves higher compression ratios than existing algorithms. The prediction of a common HRV measure, the five-minute standard deviation of inter-beat variations (SDNN) and the accurate detection of PVC beats was achieved using a Count Data Model, combined with a Poisson-generated function from three-minute ECG recordings. This was achieved with minimal computational resources and was well suited to remote patient monitoring with wearable sensors. The PVC beats detection was implemented using the same count data model together with knowledge-based rules derived from clinical knowledge. A real-time cardiac patient monitoring system was implemented using an ECG sensor and smartphone to detect PVC beats within a few seconds using artificial neural networks (ANN), and it was proven to provide highly accurate results. The automated detection and classification were implemented using a new wrapper-based hybrid approach that utilized t-distributed stochastic neighbour embedding (t-SNE) in combination with self-organizing maps (SOM) to improve classification performance. The t-SNE-SOM hybrid resulted in improved sensitivity, specificity and accuracy compared to most common hybrid methods in the presence of noise. It also provided a better, more accurate identification for the presence of many types of arrhythmias from the ECG recordings, leading to a more timely diagnosis and treatment outcome.Doctor of Philosoph

    A micro neural network for healthcare sensor data stream classification in sustainable and smart cities

    Get PDF
    A smart city is an intelligent space, in which large amounts of data are collected and analyzed using low-cost sensors and automatic algorithms. The application of artificial intelligence and Internet of Things (IoT) technologies in electronic health (E-health) can efficiently promote the development of sustainable and smart cities. The IoT sensors and intelligent algorithms enable the remote monitoring and analyzing of the healthcare data of patients, which reduces the medical and travel expenses in cities. Existing deep learning-based methods for healthcare sensor data classification have made great achievements. However, these methods take much time and storage space for model training and inference. They are difficult to be deployed in small devices to classify the physiological signal of patients in real time. To solve the above problems, this paper proposes a micro time series classification model called the micro neural network (MicroNN). The proposed model is micro enough to be deployed on tiny edge devices. MicroNN can be applied to long-term physiological signal monitoring based on edge computing devices. We conduct comprehensive experiments to evaluate the classification accuracy and computation complexity of MicroNN. Experiment results show that MicroNN performs better than the state-of-the-art methods. The accuracies on the two datasets (MIT-BIH-AR and INCART) are 98.4% and 98.1%, respectively. Finally, we present an application to show how MicroNN can improve the development of sustainable and smart cities

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    Biometrics

    Get PDF
    Biometrics uses methods for unique recognition of humans based upon one or more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is used as a form of identity access management and access control. It is also used to identify individuals in groups that are under surveillance. The book consists of 13 chapters, each focusing on a certain aspect of the problem. The book chapters are divided into three sections: physical biometrics, behavioral biometrics and medical biometrics. The key objective of the book is to provide comprehensive reference and text on human authentication and people identity verification from both physiological, behavioural and other points of view. It aims to publish new insights into current innovations in computer systems and technology for biometrics development and its applications. The book was reviewed by the editor Dr. Jucheng Yang, and many of the guest editors, such as Dr. Girija Chetty, Dr. Norman Poh, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park, Dr. Sook Yoon and so on, who also made a significant contribution to the book

    Classification of Medical Data Based On Sparse Representation Using Dictionary Learning

    Get PDF
    Due to the increase in the sources of image acquisition and storage capacity, the search for relevant information in large medical image databases has become more challenging. Classification of medical data into different categories is an important task, and enables efficient cataloging and retrieval with large image collections. The medical image classification systems available today classify medical images based on modality, body part, disease or orientation. Recent work in this direction seek to use the semantics of medical data to achieve better classification. However, representation of semantics is a challenging task and sparse representation has been explored in this thesis for this task

    Development of a Self-Learning Approach Applied to Pattern Recognition and Fuzzy Control

    Get PDF
    Systeme auf Basis von Fuzzy-Regeln sind in der Entwicklung der Mustererkennung und Steuersystemen weit verbreitet verwendet. Die meisten aktuellen Methoden des Designs der Fuzzy-Regel-basierte Systeme leiden unter folgenden Problemen 1. Das Verfahren der Fuzzifizierung berücksichtigt weder die statistischen Eigenschaften noch reale Verteilung der betrachteten Daten / Signale nicht. Daher sind die generierten Fuzzy- Zugehörigkeitsfunktionen nicht wirklich in der Lage, diese Daten zu äußern. Darüber hinaus wird der Prozess der Fuzzifizierung manuell definiert. 2. Die ursprüngliche Größe der Regelbasis ist pauschal bestimmt. Diese Feststellung bedeutet, dass dieses Verfahren eine Redundanz in den verwendeten Regeln produzieren kann. Somit wird diese Redundanz zum Auftreten der Probleme von Komplexität und Dimensionalität führen. Der Prozess der Vermeidung dieser Probleme durch das Auswahlverfahren der einschlägigen Regeln kann zum Rechenaufwandsproblem führen. 3. Die Form der Fuzzy-Regel leidet unter dem Problem des Verlusts von Informationen, was wiederum zur Zuschreibung diesen betrachteten Variablen anderen unrealen Bereich führen kann. 4. Ferner wird die Anpassung der Fuzzy- Zugehörigkeitsfunktionen mit den Problemen von Komplexität und Rechenaufwand, wegen der damit verbundenen Iteration und mehrerer Parameter, zugeordnet. Auch wird diese Anpassung im Bereich jeder einzelner Regel realisiert; das heißt, der Anpassungsprozess im Bereich der gesamten Fuzzy-Regelbasis wird nicht durchgeführt

    Tactile Sensing for Assistive Robotics

    Get PDF
    corecore