1,308 research outputs found

    Seminar Users in the Arabic Twitter Sphere

    Full text link
    We introduce the notion of "seminar users", who are social media users engaged in propaganda in support of a political entity. We develop a framework that can identify such users with 84.4% precision and 76.1% recall. While our dataset is from the Arab region, omitting language-specific features has only a minor impact on classification performance, and thus, our approach could work for detecting seminar users in other parts of the world and in other languages. We further explored a controversial political topic to observe the prevalence and potential potency of such users. In our case study, we found that 25% of the users engaged in the topic are in fact seminar users and their tweets make nearly a third of the on-topic tweets. Moreover, they are often successful in affecting mainstream discourse with coordinated hashtag campaigns.Comment: to appear in SocInfo 201

    Crowdsourcing Cybersecurity: Cyber Attack Detection using Social Media

    Full text link
    Social media is often viewed as a sensor into various societal events such as disease outbreaks, protests, and elections. We describe the use of social media as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our approach detects a broad range of cyber-attacks (e.g., distributed denial of service (DDOS) attacks, data breaches, and account hijacking) in an unsupervised manner using just a limited fixed set of seed event triggers. A new query expansion strategy based on convolutional kernels and dependency parses helps model reporting structure and aids in identifying key event characteristics. Through a large-scale analysis over Twitter, we demonstrate that our approach consistently identifies and encodes events, outperforming existing methods.Comment: 13 single column pages, 5 figures, submitted to KDD 201

    A Theory of Hashtag Hijacking

    Get PDF
    This article presents the theoretical framework for hashtag hijacking, a subversive communicative strategy that disrupts and challenges dominant discourses of hashtag activism on social media sites. Drawing from the literature on new media, digital activism, and persuasion, our theory shows how hashtag hijacking can reroute and reappropriate efforts made by media activists and sources who occupy positions of power. Tracking the evolution of #MyNYPD as a working exemplar, we explicate how hashtag activism and hijacking develop and foster two parallel, yet disparate discourses in the new media landscape

    Equality of Voice: Towards Fair Representation in Crowdsourced Top-K Recommendations

    Get PDF
    To help their users to discover important items at a particular time, major websites like Twitter, Yelp, TripAdvisor or NYTimes provide Top-K recommendations (e.g., 10 Trending Topics, Top 5 Hotels in Paris or 10 Most Viewed News Stories), which rely on crowdsourced popularity signals to select the items. However, different sections of a crowd may have different preferences, and there is a large silent majority who do not explicitly express their opinion. Also, the crowd often consists of actors like bots, spammers, or people running orchestrated campaigns. Recommendation algorithms today largely do not consider such nuances, hence are vulnerable to strategic manipulation by small but hyper-active user groups. To fairly aggregate the preferences of all users while recommending top-K items, we borrow ideas from prior research on social choice theory, and identify a voting mechanism called Single Transferable Vote (STV) as having many of the fairness properties we desire in top-K item (s)elections. We develop an innovative mechanism to attribute preferences of silent majority which also make STV completely operational. We show the generalizability of our approach by implementing it on two different real-world datasets. Through extensive experimentation and comparison with state-of-the-art techniques, we show that our proposed approach provides maximum user satisfaction, and cuts down drastically on items disliked by most but hyper-actively promoted by a few users.Comment: In the proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* '19). Please cite the conference versio

    Traveling Trends: Social Butterflies or Frequent Fliers?

    Full text link
    Trending topics are the online conversations that grab collective attention on social media. They are continually changing and often reflect exogenous events that happen in the real world. Trends are localized in space and time as they are driven by activity in specific geographic areas that act as sources of traffic and information flow. Taken independently, trends and geography have been discussed in recent literature on online social media; although, so far, little has been done to characterize the relation between trends and geography. Here we investigate more than eleven thousand topics that trended on Twitter in 63 main US locations during a period of 50 days in 2013. This data allows us to study the origins and pathways of trends, how they compete for popularity at the local level to emerge as winners at the country level, and what dynamics underlie their production and consumption in different geographic areas. We identify two main classes of trending topics: those that surface locally, coinciding with three different geographic clusters (East coast, Midwest and Southwest); and those that emerge globally from several metropolitan areas, coinciding with the major air traffic hubs of the country. These hubs act as trendsetters, generating topics that eventually trend at the country level, and driving the conversation across the country. This poses an intriguing conjecture, drawing a parallel between the spread of information and diseases: Do trends travel faster by airplane than over the Internet?Comment: Proceedings of the first ACM conference on Online social networks, pp. 213-222, 201

    Latent Sentiment Detection in Online Social Networks: A Communications-oriented View

    Full text link
    In this paper, we consider the problem of latent sentiment detection in Online Social Networks such as Twitter. We demonstrate the benefits of using the underlying social network as an Ising prior to perform network aided sentiment detection. We show that the use of the underlying network results in substantially lower detection error rates compared to strictly features-based detection. In doing so, we introduce a novel communications-oriented framework for characterizing the probability of error, based on information-theoretic analysis. We study the variation of the calculated error exponent for several stylized network topologies such as the complete network, the star network and the closed-chain network, and show the importance of the network structure in determining detection performance.Comment: 13 pages, 6 figures, Submitted to ICC 201
    corecore