1,641 research outputs found

    A reliable order-statistics-based approximate nearest neighbor search algorithm

    Full text link
    We propose a new algorithm for fast approximate nearest neighbor search based on the properties of ordered vectors. Data vectors are classified based on the index and sign of their largest components, thereby partitioning the space in a number of cones centered in the origin. The query is itself classified, and the search starts from the selected cone and proceeds to neighboring ones. Overall, the proposed algorithm corresponds to locality sensitive hashing in the space of directions, with hashing based on the order of components. Thanks to the statistical features emerging through ordering, it deals very well with the challenging case of unstructured data, and is a valuable building block for more complex techniques dealing with structured data. Experiments on both simulated and real-world data prove the proposed algorithm to provide a state-of-the-art performance

    Geometric Mining: Scaling Geometric Hashing to Large Datasets

    Full text link
    It is known that relative feature location is important in representing objects, but assumptions that make learning tractable often simplify how structure is encoded e.g. spatial pooling or star models. For example, techniques such as spatial pyramid matching (SPM), in-conjunction with machine learning techniques perform well [13]. However, there are limitations to such spatial encoding schemes which discard important information about the layout of features. In contrast, we propose to use the object itself to choose the basis of the features in an object centric approach. In doing so we return to the early work of geometric hashing [18] but demonstrate how such approaches can be scaled-up to modern day object detection challenges in terms of both the number of examples and their variability. We apply a two stage process, initially filtering background features to localise the objects and then hashing the remaining pairwise features in an affine invariant model. During learning, we identify class-wise key feature predictors. We validate our detection and classification of objects on the PASCAL VOC'07 and' 11 [6] and CarDb [21] datasets and compare with state of the art detectors and classifiers. Importantly we demonstrate how structure in features can be efficiently identified and how its inclusion can increase performance. This feature centric learning technique allows us to localise objects even without object annotation during training and the resultant segmentation provides accurate state of the art object localization, without the need for annotations
    corecore