3 research outputs found

    Multi-Hop Relaying Using Energy Harvesting

    Get PDF
    In this letter, the performance of multi-hop relaying using energy harvesting is evaluated. Both amplify-and-forward and decode-and-forward relaying protocols are considered. The evaluation is conducted for time-switching energy harvesting as well as power-splitting energy harvesting. The largest number of hops given an initial amount of energy from the source node is calculated. Numerical results show that, in order to extend the network coverage using multi-hop relaying, time-switching is a better option than power splitting and in some cases, decode-and-forward also supports more hops than amplify-and-forward

    Energy harvesting AF relaying in the presence of interference and Nakagami-m fading

    Get PDF
    Energy-harvesting relaying is a promising solution to the extra energy requirement at the relay. It can transfer energy from the source to the relay. This will encourage more idle nodes to be involved in relaying. In this paper, the outage probability and the throughput of an amplify-and-forward relaying system using energy harvesting are analyzed. Both time switching and power-splitting harvesting schemes are considered. The analysis takes into account both the Nakagami-mm fading caused by signal propagation and the interference caused by other transmitters. Numerical results show that time switching is more sensitive to system parameters than power splitting. Also, the system performance is more sensitive to the transmission rate requirement, the signal-to-interference-plus-noise ratio in the first hop and the relaying method

    Wireless Resource Management in Industrial Internet of Things

    Get PDF
    Wireless communications are highly demanded in Industrial Internet of Things (IIoT) to realize the vision of future flexible, scalable and customized manufacturing. Despite the academia research and on-going standardization efforts, there are still many challenges for IIoT, including the ultra-high reliability and low latency requirements, spectral shortage, and limited energy supply. To tackle the above challenges, we will focus on wireless resource management in IIoT in this thesis by designing novel framework, analyzing performance and optimizing wireless resources. We first propose a bandwidth reservation scheme for Tactile Internet in the local area network of IIoT. Specifically, we minimize the reserved bandwidth taking into account the classification errors while ensuring the latency and reliability requirements. We then extend to the more challenging long distance communications for IIoT, which can support the global skill-set delivery network. We propose to predict the future system state and send to the receiver in advance, and thus the delay experienced by the user is reduced. The bandwidth usage is analysed and minimized to ensure delay and reliability requirements. Finally, we address the issue of energy supply in IIoT, where Radio frequency energy harvesting (RFEH) is used to charge unattended IIoT low-power devices remotely and continuously. To motivate the third-party chargers, a contract theory-based framework is proposed, where the optimal contract is derived to maximize the social welfare
    corecore