559 research outputs found

    Harmonic moments of the gluon density distribution in AA collisions

    Full text link
    By using Monte-Carlo implementations of kTk_T-factorization formula with running-coupling BK unintegrated gluon distributions for nucleus-nucleus collisions, we compute higher order harmonic moments of the initial density distribution for both RHIC(Au+Au@200GeV) and LHC([email protected]) collisions. We study their sensitivity to the size of the valence parton distribution in the nucleon.Comment: 4 pages, 2 figures, references added, figure 2 is replaced by the results of central collision

    3D Jet Tomography of Twisted Strongly Coupled Quark Gluon Plasmas

    Full text link
    The triangular enhancement of the rapidity distribution of hadrons produced in p+A reactions relative to p+p is a leading order in A^{1/3}/log(s) violation of longitudinal boost invariance at high energies. In A+A reactions this leads to a trapezoidal enhancement of the local rapidity density of produced gluons. The local rapidity gradient is proportional to the local participant number asymmetry, and leads to an effective rotation in the reaction plane. We propose that three dimensional jet tomography, correlating the long range rapidity and azimuthal dependences of the nuclear modification factor, R_{AA}(\eta,\phi,p_\perp; b>0), can be used to look for this intrinsic longitudinal boost violating structure of A+AA+A collisions to image the produced twisted strongly coupled quark gluon plasma (sQGP). In addition to dipole and elliptic azimuthal moments of R_{AA}, a significant high p_\perp octupole moment is predicted away from midrapidity. The azimuthal angles of maximal opacity and hence minima of R_{AA} are rotated away from the normal to the reaction plane by an `Octupole Twist' angle, \theta_3(\eta), at forward rapidities.Comment: 10 Pages, 16 Figures, RevTex, Replaced with Peer reviewed verion for PR

    The eccentricity in heavy-ion collisions from Color Glass Condensate initial conditions

    Get PDF
    The eccentricity in coordinate-space at midrapidity of the overlap zone in high-energy heavy-ion collisions predicted by the k⊥k_\perp-factorization formalism is generically larger than expected from scaling with the number of participants. We provide a simple qualitative explanation of the effect which shows that it is not caused predominantly by edge effects. We also show that it is quite insensitive to ``details'' of the unintegrated gluon distribution functions such as the presence of leading-twist shadowing and of an extended geometric scaling window. The larger eccentricity increases the azimuthal asymmetry of high transverse momentum particles. Finally, we point out that the longitudinal structure of the Color Glass Condensate initial condition for hydrodynamics away from midrapidity is non-trivial but requires understanding of large-xx effects.Comment: 8 pages, 7 figures; v3: added note regarding Qs2~n_part versus Qs2~T_A, final version to appear in PR

    Collective flow from AA, pA to pp collisions - Toward a unified paradigm

    Full text link
    I give an overview of the latest development in understanding collective phenomena in high-multiplicity hadronic final state from relativistic nucleus-nucleus, proton-nucleus and proton-proton collisions. Upon reviewing the experimental data and confronting them with theoretical models, a unified paradigm in describing the observed collectivity across all hadronic collision systems is emerging. Potential future paths toward addressing key open questions, especially on collectivity in small systems (pp, pA), are discussed.Comment: 9 pages, 6 figures, plenary contribution to Quark Matter 2017, February 5-11 (2017), Chicago (IL), US

    The Hot QCD White Paper: Exploring the Phases of QCD at RHIC and the LHC

    Full text link
    The past decade has seen huge advances in experimental measurements made in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and more recently at the Large Hadron Collider (LHC). These new data, in combination with theoretical advances from calculations made in a variety of frameworks, have led to a broad and deep knowledge of the properties of thermal QCD matter. Increasingly quantitative descriptions of the quark-gluon plasma (QGP) created in these collisions have established that the QGP is a strongly coupled liquid with the lowest value of specific viscosity ever measured. However, much remains to be learned about the precise nature of the initial state from which this liquid forms, how its properties vary across its phase diagram and how, at a microscopic level, the collective properties of this liquid emerge from the interactions among the individual quarks and gluons that must be visible if the liquid is probed with sufficiently high resolution. This white paper, prepared by the Hot QCD Writing Group as part of the U.S. Long Range Plan for Nuclear Physics, reviews the recent progress in the field of hot QCD and outlines the scientific opportunities in the next decade for resolving the outstanding issues in the field.Comment: 110 pages, 33 figures, 429 references. Prepared as part of the U.S. Long-Range Plan for Nuclear Physic
    • …
    corecore