459 research outputs found

    Redesigning OP2 Compiler to Use HPX Runtime Asynchronous Techniques

    Full text link
    Maximizing parallelism level in applications can be achieved by minimizing overheads due to load imbalances and waiting time due to memory latencies. Compiler optimization is one of the most effective solutions to tackle this problem. The compiler is able to detect the data dependencies in an application and is able to analyze the specific sections of code for parallelization potential. However, all of these techniques provided with a compiler are usually applied at compile time, so they rely on static analysis, which is insufficient for achieving maximum parallelism and producing desired application scalability. One solution to address this challenge is the use of runtime methods. This strategy can be implemented by delaying certain amount of code analysis to be done at runtime. In this research, we improve the parallel application performance generated by the OP2 compiler by leveraging HPX, a C++ runtime system, to provide runtime optimizations. These optimizations include asynchronous tasking, loop interleaving, dynamic chunk sizing, and data prefetching. The results of the research were evaluated using an Airfoil application which showed a 40-50% improvement in parallel performance.Comment: 18th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2017

    Multithreading Aware Hardware Prefetching for Chip Multiprocessors

    Get PDF
    To take advantage of the processing power in the Chip Multiprocessors design, applications must be divided into semi-independent processes that can run concur- rently on multiple cores within a system. Therefore, programmers must insert thread synchronization semantics (i.e. locks, barriers, and condition variables) to synchro- nize data access between processes. Indeed, threads spend long time waiting to acquire the lock of a critical section. In addition, a processor has to stall execution to wait for load data accesses to complete. Furthermore, there are often independent instructions which include load instructions beyond synchronization semantics that could be executed in parallel while a thread waits on the synchronization semantics. The conveniences of the cache memories come with some extra cost in Chip Multiprocessors. Cache Coherence mechanisms address the Memory Consistency problem. However, Cache Coherence adds considerable overhead to memory accesses. Having aggressive prefetcher on different cores of a Chip Multiprocessor can definitely lead to significant system performance degradation when running multi-threaded applications. This result of prefetch-demand interference when a prefetcher in one core ends up pulling shared data from a producing core before it has been written, the cache block will end up transitioning back and forth between the cores and result in useless prefetch, saturating the memory bandwidth and substantially increase the latency to critical shared data. We present a hardware prefetcher that enables large performance improvements from prefetching in Chip Multiprocessors by significantly reducing prefetch-demand interference. Furthermore, it will utilize the time that a thread spends waiting on syn- chronization semantics to run ahead of the critical section to speculate and prefetch independent load instruction data beyond the synchronization semantics
    • …
    corecore