6 research outputs found

    InversOS: Efficient Control-Flow Protection for AArch64 Applications with Privilege Inversion

    Full text link
    With the increasing popularity of AArch64 processors in general-purpose computing, securing software running on AArch64 systems against control-flow hijacking attacks has become a critical part toward secure computation. Shadow stacks keep shadow copies of function return addresses and, when protected from illegal modifications and coupled with forward-edge control-flow integrity, form an effective and proven defense against such attacks. However, AArch64 lacks native support for write-protected shadow stacks, while software alternatives either incur prohibitive performance overhead or provide weak security guarantees. We present InversOS, the first hardware-assisted write-protected shadow stacks for AArch64 user-space applications, utilizing commonly available features of AArch64 to achieve efficient intra-address space isolation (called Privilege Inversion) required to protect shadow stacks. Privilege Inversion adopts unconventional design choices that run protected applications in the kernel mode and mark operating system (OS) kernel memory as user-accessible; InversOS therefore uses a novel combination of OS kernel modifications, compiler transformations, and another AArch64 feature to ensure the safety of doing so and to support legacy applications. We show that InversOS is secure by design, effective against various control-flow hijacking attacks, and performant on selected benchmarks and applications (incurring overhead of 7.0% on LMBench, 7.1% on SPEC CPU 2017, and 3.0% on Nginx web server).Comment: 18 pages, 9 figures, 4 table

    FineIBT: Fine-grain Control-flow Enforcement with Indirect Branch Tracking

    Full text link
    We present the design, implementation, and evaluation of FineIBT: a CFI enforcement mechanism that improves the precision of hardware-assisted CFI solutions, like Intel IBT and ARM BTI, by instrumenting program code to reduce the valid/allowed targets of indirect forward-edge transfers. We study the design of FineIBT on the x86-64 architecture, and implement and evaluate it on Linux and the LLVM toolchain. We designed FineIBT's instrumentation to be compact, and incur low runtime and memory overheads, and generic, so as to support a plethora of different CFI policies. Our prototype implementation incurs negligible runtime slowdowns (≈\approx0%-1.94% in SPEC CPU2017 and ≈\approx0%-1.92% in real-world applications) outperforming Clang-CFI. Lastly, we investigate the effectiveness/security and compatibility of FineIBT using the ConFIRM CFI benchmarking suite, demonstrating that our nimble instrumentation provides complete coverage in the presence of modern software features, while supporting a wide range of CFI policies (coarse- vs. fine- vs. finer-grain) with the same, predictable performance
    corecore