1,418 research outputs found
Hardware requirements for realizing a quantum advantage with deterministic single-photon sources
Boson sampling is a specialised algorithm native to the quantum photonic
platform developed for near-term demonstrations of quantum advantage over
classical computers. While clear useful applications for such near-term
pre-fault-tolerance devices are not currently known, reaching a quantum
advantage regime serves as a useful benchmark for the hardware. Here, we
analyse and detail hardware requirements needed to reach quantum advantage with
deterministic quantum emitters, a promising platform for photonic quantum
computing. We elucidate key steps that can be taken in experiments to overcome
practical constraints and establish quantitative hardware-level requirements.
We find that quantum advantage is within reach using quantum emitters with an
efficiency of 60%-70% and interferometers constructed according to a
hybrid-mode-encoding architecture, constituted of Mach-Zehnder interferometers
with an insertion loss of 0.0035 (a transmittance of 99.92%) per component
Astronomical random numbers for quantum foundations experiments
Photons from distant astronomical sources can be used as a classical source
of randomness to improve fundamental tests of quantum nonlocality,
wave-particle duality, and local realism through Bell's inequality and
delayed-choice quantum eraser tests inspired by Wheeler's cosmic-scale
Mach-Zehnder interferometer gedankenexperiment. Such sources of random numbers
may also be useful for information-theoretic applications such as key
distribution for quantum cryptography. Building on the design of an
"astronomical random-number generator" developed for the recent "cosmic Bell"
experiment [Handsteiner et al., Phys. Rev. Lett. 118, 060401 (2017)], in this
paper we report on the design and characterization of a device that, with
20-nanosecond latency, outputs a bit based on whether the wavelength of an
incoming photon is greater than or less than 700 nm. Using the one-meter
telescope at the Jet Propulsion Laboratory (JPL) Table Mountain Observatory, we
generated random bits from astronomical photons in both color channels from 50
stars of varying color and magnitude, and from 12 quasars with redshifts up to
. With stars, we achieved bit rates of Hz /
m, limited by saturation for our single-photon detectors, and with quasars
of magnitudes between 12.9 and 16, we achieved rates between and Hz /m. For bright quasars, the resulting bitstreams exhibit
sufficiently low amounts of statistical predictability as quantified by the
mutual information. In addition, a sufficiently high fraction of bits generated
are of true astronomical origin in order to address both the locality and
freedom-of-choice loopholes when used to set the measurement settings in a test
of the Bell-CHSH inequality.Comment: 17 pages, 12 figures. References added and minor edits to match
published versio
Quantum Computing
Quantum mechanics---the theory describing the fundamental workings of
nature---is famously counterintuitive: it predicts that a particle can be in
two places at the same time, and that two remote particles can be inextricably
and instantaneously linked. These predictions have been the topic of intense
metaphysical debate ever since the theory's inception early last century.
However, supreme predictive power combined with direct experimental observation
of some of these unusual phenomena leave little doubt as to its fundamental
correctness. In fact, without quantum mechanics we could not explain the
workings of a laser, nor indeed how a fridge magnet operates. Over the last
several decades quantum information science has emerged to seek answers to the
question: can we gain some advantage by storing, transmitting and processing
information encoded in systems that exhibit these unique quantum properties?
Today it is understood that the answer is yes. Many research groups around the
world are working towards one of the most ambitious goals humankind has ever
embarked upon: a quantum computer that promises to exponentially improve
computational power for particular tasks. A number of physical systems,
spanning much of modern physics, are being developed for this task---ranging
from single particles of light to superconducting circuits---and it is not yet
clear which, if any, will ultimately prove successful. Here we describe the
latest developments for each of the leading approaches and explain what the
major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53
(4 March 2010). Published version is more up-to-date and has several
corrections, but is half the length with far fewer reference
Technologies for trapped-ion quantum information systems
Scaling-up from prototype systems to dense arrays of ions on chip, or vast
networks of ions connected by photonic channels, will require developing
entirely new technologies that combine miniaturized ion trapping systems with
devices to capture, transmit and detect light, while refining how ions are
confined and controlled. Building a cohesive ion system from such diverse parts
involves many challenges, including navigating materials incompatibilities and
undesired coupling between elements. Here, we review our recent efforts to
create scalable ion systems incorporating unconventional materials such as
graphene and indium tin oxide, integrating devices like optical fibers and
mirrors, and exploring alternative ion loading and trapping techniques.Comment: 19 pages, 18 figure
Trapped-Ion Quantum Computing: Progress and Challenges
Trapped ions are among the most promising systems for practical quantum
computing (QC). The basic requirements for universal QC have all been
demonstrated with ions and quantum algorithms using few-ion-qubit systems have
been implemented. We review the state of the field, covering the basics of how
trapped ions are used for QC and their strengths and limitations as qubits. In
addition, we discuss what is being done, and what may be required, to increase
the scale of trapped ion quantum computers while mitigating decoherence and
control errors. Finally, we explore the outlook for trapped-ion QC. In
particular, we discuss near-term applications, considerations impacting the
design of future systems of trapped ions, and experiments and demonstrations
that may further inform these considerations.Comment: The following article has been submitted to Applied Physics Review
Density-matrix simulation of small surface codes under current and projected experimental noise
We present a full density-matrix simulation of the quantum memory and
computing performance of the distance-3 logical qubit Surface-17, following a
recently proposed quantum circuit and using experimental error parameters for
transmon qubits in a planar circuit QED architecture. We use this simulation to
optimize components of the QEC scheme (e.g., trading off stabilizer measurement
infidelity for reduced cycle time) and to investigate the benefits of feedback
harnessing the fundamental asymmetry of relaxation-dominated error in the
constituent transmons. A lower-order approximate calculation extends these
predictions to the distance- Surface-49. These results clearly indicate
error rates below the fault-tolerance threshold of surface code, and the
potential for Surface-17 to perform beyond the break-even point of quantum
memory. At state-of-the-art qubit relaxation times and readout speeds,
Surface-49 could surpass the break-even point of computation.Comment: 10 pages + 8 pages appendix, 12 figure
- …
