26 research outputs found

    A Software-equivalent SNN Hardware using RRAM-array for Asynchronous Real-time Learning

    Full text link
    Spiking Neural Network (SNN) naturally inspires hardware implementation as it is based on biology. For learning, spike time dependent plasticity (STDP) may be implemented using an energy efficient waveform superposition on memristor based synapse. However, system level implementation has three challenges. First, a classic dilemma is that recognition requires current reading for short voltageβˆ’-spikes which is disturbed by large voltageβˆ’-waveforms that are simultaneously applied on the same memristor for realβˆ’-time learning i.e. the simultaneous readβˆ’-write dilemma. Second, the hardware needs to exactly replicate software implementation for easy adaptation of algorithm to hardware. Third, the devices used in hardware simulations must be realistic. In this paper, we present an approach to address the above concerns. First, the learning and recognition occurs in separate arrays simultaneously in realβˆ’-time, asynchronously βˆ’- avoiding nonβˆ’-biomimetic clocking based complex signal management. Second, we show that the hardware emulates software at every stage by comparison of SPICE (circuitβˆ’-simulator) with MATLAB (mathematical SNN algorithm implementation in software) implementations. As an example, the hardware shows 97.5 per cent accuracy in classification which is equivalent to software for a Fisherβˆ’-Iris dataset. Third, the STDP is implemented using a model of synaptic device implemented using HfO2 memristor. We show that an increasingly realistic memristor model slightly reduces the hardware performance (85 per cent), which highlights the need to engineer RRAM characteristics specifically for SNN.Comment: Eight pages, ten figures and two table

    GraphR: Accelerating Graph Processing Using ReRAM

    Full text link
    This paper presents GRAPHR, the first ReRAM-based graph processing accelerator. GRAPHR follows the principle of near-data processing and explores the opportunity of performing massive parallel analog operations with low hardware and energy cost. The analog computation is suit- able for graph processing because: 1) The algorithms are iterative and could inherently tolerate the imprecision; 2) Both probability calculation (e.g., PageRank and Collaborative Filtering) and typical graph algorithms involving integers (e.g., BFS/SSSP) are resilient to errors. The key insight of GRAPHR is that if a vertex program of a graph algorithm can be expressed in sparse matrix vector multiplication (SpMV), it can be efficiently performed by ReRAM crossbar. We show that this assumption is generally true for a large set of graph algorithms. GRAPHR is a novel accelerator architecture consisting of two components: memory ReRAM and graph engine (GE). The core graph computations are performed in sparse matrix format in GEs (ReRAM crossbars). The vector/matrix-based graph computation is not new, but ReRAM offers the unique opportunity to realize the massive parallelism with unprecedented energy efficiency and low hardware cost. With small subgraphs processed by GEs, the gain of performing parallel operations overshadows the wastes due to sparsity. The experiment results show that GRAPHR achieves a 16.01x (up to 132.67x) speedup and a 33.82x energy saving on geometric mean compared to a CPU baseline system. Com- pared to GPU, GRAPHR achieves 1.69x to 2.19x speedup and consumes 4.77x to 8.91x less energy. GRAPHR gains a speedup of 1.16x to 4.12x, and is 3.67x to 10.96x more energy efficiency compared to PIM-based architecture.Comment: Accepted to HPCA 201
    corecore