696 research outputs found

    Log-domain implementation of complex dynamics reaction-diffusion neural networks

    Get PDF
    In this paper, we have identified a second-order reaction-diffusion differential equation able to reproduce through parameter setting different complex spatio-temporal behaviors. We have designed a log-domain hardware that implements the spatially discretized version of the selected reaction-diffusion equation. The logarithmic compression of the state variables allows several decades of variation of these state variables within subthreshold operation of the MOS transistors. Furthermore, as all the equation parameters are implemented as currents, they can be adjusted several decades. As a demonstrator, we have designed a chip containing a linear array of ten second-order dynamics coupled cells. Using this hardware, we have experimentally reproduced two complex spatio-temporal phenomena: the propagation of travelling waves and of trigger waves, as well as isolated oscillatory cells.Gobierno de España TIC1999-0446-C02-02Office of Naval Research (USA

    Mathematical Analysis of Memristor CNN

    Get PDF
    In this chapter we present mathematical study of memristor systems. More precisely, we apply local activity theory in order to determine the edge of chaos regime in reaction-diffusion memristor cellular nanoscale networks (RD-MCNN) and in memristor hysteresis CNN (M-HCNN). First we give an overview of mathematical models of memristors, CNN and complexity. Then we consider the above mentioned two models and we develop constructive algorithm for determination of edge of chaos in them. Based on these algorithms numerical simulations are provided. Two applications of M-HCNN model in image processing are presented

    Memristors

    Get PDF
    This Edited Volume Memristors - Circuits and Applications of Memristor Devices is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Engineering. The book comprises single chapters authored by various researchers and edited by an expert active in the physical sciences, engineering, and technology research areas. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on physical sciences, engineering, and technology,and open new possible research paths for further novel developments

    3-Layer CNN Chip for Focal-Plane Complex Dynamics with Adaptive Image Capture

    Get PDF
    This paper presents a CMOS implementation of a layered CNN concurrent with 32times32 photosensors with locally programmable integration time for adaptive image capture. The network is arranged in two layers containing feedback and control templates, inter-layer connections and programmable ratio of time constants. There are also feedforward connections to a third layer, which is faster, and devoted exclusively for combining the outputs of the other two. A more robust and linear multiplier block has been employed to reduce irregular analog wave propagation ought to asymmetric synapses. Global and local adaptation circuits are included on-chip. The predicted computing power per power consumption, 240MOPS/mW, is amongst the largest reported, what renders this kind of devices as especially adequate for portable applications of artificial visionMinisterio de Ciencia y Tecnología TIC2003-09817-C02-01Office of Naval (USA) N-00014-02-1-088

    Cellular Nonlinear Networks: optimized implementation on FPGA and applications to robotics

    Get PDF
    L'objectiu principal d'aquesta tesi consisteix a estudiar la factibilitat d'implementar un sensor càmera CNN amb plena funcionalitat basat en FPGA de baix cost adequat per a aplicacions en robots mòbils. L'estudi dels fonaments de les xarxes cel•lulars no lineals (CNNs) i la seva aplicació eficaç en matrius de portes programables (FPGAs) s'ha complementat, d'una banda amb el paral•lelisme que s'estableix entre arquitectura multi-nucli de les CNNs i els eixams de robots mòbils, i per l'altre banda amb la correlació dinàmica de CNNs i arquitectures memristive. A més, els memristors es consideren els substituts dels futurs dispositius de memòria flash per la seva capacitat d'integració d'alta densitat i el seu consum d'energia prop de zero. En el nostre cas, hem estat interessats en el desenvolupament d’FPGAs que han deixat de ser simples dispositius per a la creació ràpida de prototips ASIC per esdevenir complets dispositius reconfigurables amb integració de la memòria i els elements de processament general. En particular, s'han explorat com les arquitectures implementades CNN en FPGAs poden ser optimitzades en termes d’àrea ocupada en el dispositiu i el seu consum de potència. El nostre objectiu final ens ah portat a implementar de manera eficient una CNN-UM amb complet funcionament a un baix cost i baix consum sobre una FPGA amb tecnología flash. Per tant, futurs estudis sobre l’arquitectura eficient de la CNN sobre la FPGA i la interconnexió amb els robots comercials disponibles és un dels objectius d'aquesta tesi que se seguiran en les línies de futur exposades en aquest treball.El objetivo principal de esta tesis consiste en estudiar la factibilidad de implementar un sensor cámara CNN con plena funcionalidad basado en FPGA de bajo coste adecuado para aplicaciones en robots móviles. El estudio de los fundamentos de las redes celulares no lineales (CNNs) y su aplicación eficaz en matrices de puertas programables (FPGAs) se ha complementado, por un lado con el paralelismo que se establece entre arquitectura multi -núcleo de las CNNs y los enjambres de robots móviles, y por el otro lado con la correlación dinámica de CNNs y arquitecturas memristive. Además, los memristors se consideran los sustitutos de los futuros dispositivos de memoria flash por su capacidad de integración de alta densidad y su consumo de energía cerca de cero. En nuestro caso, hemos estado interesados en el desarrollo de FPGAs que han dejado de ser simples dispositivos para la creación rápida de prototipos ASIC para convertirse en completos dispositivos reconfigurables con integración de la memoria y los elementos de procesamiento general. En particular, se han explorado como las arquitecturas implementadas CNN en FPGAs pueden ser optimizadas en términos de área ocupada en el dispositivo y su consumo de potencia. Nuestro objetivo final nos ah llevado a implementar de manera eficiente una CNN-UM con completo funcionamiento a un bajo coste y bajo consumo sobre una FPGA con tecnología flash. Por lo tanto, futuros estudios sobre la arquitectura eficiente de la CNN sobre la FPGA y la interconexión con los robots comerciales disponibles es uno de los objetivos de esta tesis que se seguirán en las líneas de futuro expuestas en este trabajo.The main goal of this thesis consists in studying the feasibility to implement a full-functionality CNN camera sensor based on low-cost FPGA device suitable for mobile robotic applications. The study of Cellular Nonlinear Networks (CNNs) fundamentals and its efficient implementation on Field Programmable Gate Arrays (FPGAs) has been complemented, on one side with the parallelism established between multi-core CNN architecture and swarm of mobile robots, and on the other side with the dynamics correlation of CNNs and memristive architectures. Furthermore, memristors are considered the future substitutes of flash memory devices because of its capability of high density integration and its close to zero power consumption. In our case, we have been interested in the development of FPGAs that have ceased to be simple devices for ASIC fast prototyping to become complete reconfigurable devices embedding memory and processing elements. In particular, we have explored how the CNN architectures implemented on FPGAs can be optimized in terms of area occupied on the device or power consumption. Our final accomplishment has been implementing efficiently a fully functional reconfigurable CNN-UM on a low-cost low-power FPGA based on flash technology. Therefore, further studies on an efficient CNN architecture on FPGA and interfacing it with commercially-available robots is one of the objectives of this thesis that will be followed in the future directions exposed in this work

    Bio-inspired Neuromorphic Computing Using Memristor Crossbar Networks

    Full text link
    Bio-inspired neuromorphic computing systems built with emerging devices such as memristors have become an active research field. Experimental demonstrations at the network-level have suggested memristor-based neuromorphic systems as a promising candidate to overcome the von-Neumann bottleneck in future computing applications. As a hardware system that offers co-location of memory and data processing, memristor-based networks represent an efficient computing platform with minimal data transfer and high parallelism. Furthermore, active utilization of the dynamic processes during resistive switching in memristors can help realize more faithful emulation of biological device and network behaviors, with the potential to process dynamic temporal inputs efficiently. In this thesis, I present experimental demonstrations of neuromorphic systems using fabricated memristor arrays as well as network-level simulation results. Models of resistive switching behavior in two types of memristor devices, conventional first-order and recently proposed second-order memristor devices, will be first introduced. Secondly, experimental demonstration of K-means clustering through unsupervised learning in a memristor network will be presented. The memristor based hardware systems achieved high classification accuracy (93.3%) on the standard IRIS data set, suggesting practical networks can be built with optimized memristor devices. Thirdly, implementation of a partial differential equation (PDE) solver in memristor arrays will be discussed. This work expands the capability of memristor-based computing hardware from ‘soft’ to ‘hard’ computing tasks, which require very high precision and accurate solutions. In general first-order memristors are suitable to perform tasks that are based on vector-matrix multiplications, ranging from K-means clustering to PDE solvers. On the other hand, utilizing internal device dynamics in second-order memristors can allow natural emulation of biological behaviors and enable network functions such as temporal data processing. An effort to explore second-order memristor devices and their network behaviors will be discussed. Finally, we propose ideas to build large-size passive memristor crossbar arrays, including fabrication approaches, guidelines of device structure, and analysis of the parasitic effects in larger arrays.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147610/1/yjjeong_1.pd
    corecore