40 research outputs found

    Progress on pricing with peering

    Get PDF
    This paper examines a simple model of how a provider ISP charges customer ISPs by assuming the provider ISP wants to maximize its revenue when customer ISPs have the possibility of setting up peering connections. It is shown that finding the optimal pricing is NP-complete, and APX-complete. Customers can respond to price in many ways, including throttling traffic as well as peering. An algorithm is studied which obtains a 1/4 approximation for a wide range of customer responses

    Routing Games over Time with FIFO policy

    Full text link
    We study atomic routing games where every agent travels both along its decided edges and through time. The agents arriving on an edge are first lined up in a \emph{first-in-first-out} queue and may wait: an edge is associated with a capacity, which defines how many agents-per-time-step can pop from the queue's head and enter the edge, to transit for a fixed delay. We show that the best-response optimization problem is not approximable, and that deciding the existence of a Nash equilibrium is complete for the second level of the polynomial hierarchy. Then, we drop the rationality assumption, introduce a behavioral concept based on GPS navigation, and study its worst-case efficiency ratio to coordination.Comment: Submission to WINE-2017 Deadline was August 2nd AoE, 201

    On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs

    Get PDF
    Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. AlcĆ³n, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ā‰„ 0, we ask whether there exists a subset V ā€² āŠ† V with | V ā€² | ā‰„ k such that the induced subgraph G [V ā€² ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Ī” + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Ī”. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.Facultad de Ciencias Exacta

    On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs

    Get PDF
    Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. AlcĆ³n, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ā‰„ 0, we ask whether there exists a subset V ā€² āŠ† V with | V ā€² | ā‰„ k such that the induced subgraph G [V ā€² ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Ī” + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Ī”. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.Facultad de Ciencias Exacta
    corecore