920 research outputs found

    Detailed versus gross spectro-temporal cues for the perception of stop consonants

    Get PDF
    x+182hlm.;24c

    Improving speaker turn embedding by crossmodal transfer learning from face embedding

    Full text link
    Learning speaker turn embeddings has shown considerable improvement in situations where conventional speaker modeling approaches fail. However, this improvement is relatively limited when compared to the gain observed in face embedding learning, which has been proven very successful for face verification and clustering tasks. Assuming that face and voices from the same identities share some latent properties (like age, gender, ethnicity), we propose three transfer learning approaches to leverage the knowledge from the face domain (learned from thousands of images and identities) for tasks in the speaker domain. These approaches, namely target embedding transfer, relative distance transfer, and clustering structure transfer, utilize the structure of the source face embedding space at different granularities to regularize the target speaker turn embedding space as optimizing terms. Our methods are evaluated on two public broadcast corpora and yield promising advances over competitive baselines in verification and audio clustering tasks, especially when dealing with short speaker utterances. The analysis of the results also gives insight into characteristics of the embedding spaces and shows their potential applications

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Audio processing on constrained devices

    Get PDF
    This thesis discusses the future of smart business applications on mobile phones and the integration of voice interface across several business applications. It proposes a framework that provides speech processing support for business applications on mobile phones. The framework uses Gaussian Mixture Models (GMM) for low-enrollment speaker recognition and limited vocabulary speech recognition. Algorithms are presented for pre-processing of audio signals into different categories and for start and end point detection. A method is proposed for speech processing that uses Mel Frequency Cepstral Coeffcients (MFCC) as primary feature for extraction. In addition, optimization schemes are developed to improve performance, and overcome constraints of a mobile phone. Experimental results are presented for some prototype applications that evaluate the performance of computationally expensive algorithms on constrained hardware. The thesis concludes by discussing the scope for improvement for the work done in this thesis and future directions in which this work could possibly be extended

    A Soft Computing Based Approach for Multi-Accent Classification in IVR Systems

    Get PDF
    A speaker's accent is the most important factor affecting the performance of Natural Language Call Routing (NLCR) systems because accents vary widely, even within the same country or community. This variation also occurs when non-native speakers start to learn a second language, the substitution of native language phonology being a common process. Such substitution leads to fuzziness between the phoneme boundaries and phoneme classes, which reduces out-of-class variations, and increases the similarities between the different sets of phonemes. Thus, this fuzziness is the main cause of reduced NLCR system performance. The main requirement for commercial enterprises using an NLCR system is to have a robust NLCR system that provides call understanding and routing to appropriate destinations. The chief motivation for this present work is to develop an NLCR system that eliminates multilayered menus and employs a sophisticated speaker accent-based automated voice response system around the clock. Currently, NLCRs are not fully equipped with accent classification capability. Our main objective is to develop both speaker-independent and speaker-dependent accent classification systems that understand a caller's query, classify the caller's accent, and route the call to the acoustic model that has been thoroughly trained on a database of speech utterances recorded by such speakers. In the field of accent classification, the dominant approaches are the Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM). Of the two, GMM is the most widely implemented for accent classification. However, GMM performance depends on the initial partitions and number of Gaussian mixtures, both of which can reduce performance if poorly chosen. To overcome these shortcomings, we propose a speaker-independent accent classification system based on a distance metric learning approach and evolution strategy. This approach depends on side information from dissimilar pairs of accent groups to transfer data points to a new feature space where the Euclidean distances between similar and dissimilar points are at their minimum and maximum, respectively. Finally, a Non-dominated Sorting Evolution Strategy (NSES)-based k-means clustering algorithm is employed on the training data set processed by the distance metric learning approach. The main objectives of the NSES-based k-means approach are to find the cluster centroids as well as the optimal number of clusters for a GMM classifier. In the case of a speaker-dependent application, a new method is proposed based on the fuzzy canonical correlation analysis to find appropriate Gaussian mixtures for a GMM-based accent classification system. In our proposed method, we implement a fuzzy clustering approach to minimize the within-group sum-of-square-error and canonical correlation analysis to maximize the correlation between the speech feature vectors and cluster centroids. We conducted a number of experiments using the TIMIT database, the speech accent archive, and the foreign accent English databases for evaluating the performance of speaker-independent and speaker-dependent applications. Assessment of the applications and analysis shows that our proposed methodologies outperform the HMM, GMM, vector quantization GMM, and radial basis neural networks

    Speech-based recognition of self-reported and observed emotion in a dimensional space

    Get PDF
    The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance
    corecore