448 research outputs found

    The automorphism group of a graphon

    Get PDF
    We study the automorphism group of graphons (graph limits). We prove that after an appropriate "standardization" of the graphon, the automorphism group is compact. Furthermore, we characterize the orbits of the automorphism group on kk-tuples of points. Among applications we study the graph algebras defined by finite rank graphons and the space of node-transitive graphons.Comment: 29 pages, 2 figure

    Statistical hyperbolicity in groups

    Full text link
    In this paper, we introduce a geometric statistic called the "sprawl" of a group with respect to a generating set, based on the average distance in the word metric between pairs of words of equal length. The sprawl quantifies a certain obstruction to hyperbolicity. Group presentations with maximum sprawl (i.e., without this obstruction) are called statistically hyperbolic. We first relate sprawl to curvature and show that nonelementary hyperbolic groups are statistically hyperbolic, then give some results for products, for Diestel-Leader graphs and lamplighter groups. In free abelian groups, the word metrics asymptotically approach norms induced by convex polytopes, causing the study of sprawl to reduce to a problem in convex geometry. We present an algorithm that computes sprawl exactly for any generating set, thus quantifying the failure of various presentations of Z^d to be hyperbolic. This leads to a conjecture about the extreme values, with a connection to the classic Mahler conjecture.Comment: 14 pages, 5 figures. This is split off from the paper "The geometry of spheres in free abelian groups.

    Expanders, rank and graphs of groups

    Full text link
    Let G be a finitely presented group, and let {G_i} be a collection of finite index normal subgroups that is closed under intersections. Then, we prove that at least one of the following must hold: 1. G_i is an amalgamated free product or HNN extension, for infinitely many i; 2. the Cayley graphs of G/G_i (with respect to a fixed finite set of generators for G) form an expanding family; 3. inf_i (d(G_i)-1)/[G:G_i] = 0, where d(G_i) is the rank of G_i. The proof involves an analysis of the geometry and topology of finite Cayley graphs. Several applications of this result are given.Comment: 13 pages; to appear in Israel J. Mat

    Physics Without Physics: The Power of Information-theoretical Principles

    Get PDF
    David Finkelstein was very fond of the new information-theoretic paradigm of physics advocated by John Archibald Wheeler and Richard Feynman. Only recently, however, the paradigm has concretely shown its full power, with the derivation of quantum theory (Chiribella et al., Phys. Rev. A 84:012311, 2011; D'Ariano et al., 2017) and of free quantum field theory (D'Ariano and Perinotti, Phys. Rev. A 90:062106, 2014; Bisio et al., Phys. Rev. A 88:032301, 2013; Bisio et al., Ann. Phys. 354:244, 2015; Bisio et al., Ann. Phys. 368:177, 2016) from informational principles. The paradigm has opened for the first time the possibility of avoiding physical primitives in the axioms of the physical theory, allowing a refoundation of the whole physics over logically solid grounds. In addition to such methodological value, the new information-theoretic derivation of quantum field theory is particularly interesting for establishing a theoretical framework for quantum gravity, with the idea of obtaining gravity itself as emergent from the quantum information processing, as also suggested by the role played by information in the holographic principle (Susskind, J. Math. Phys. 36:6377, 1995; Bousso, Rev. Mod. Phys. 74:825, 2002). In this paper I review how free quantum field theory is derived without using mechanical primitives, including space-time, special relativity, Hamiltonians, and quantization rules. The theory is simply provided by the simplest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the three following simple principles: homogeneity, locality, and isotropy. The inherent discrete nature of the informational derivation leads to an extension of quantum field theory in terms of a quantum cellular automata and quantum walks. A simple heuristic argument sets the scale to the Planck one, and the observed regime is that of small wavevectors ...Comment: 34 pages, 8 figures. Paper for in memoriam of David Finkelstei
    corecore