2 research outputs found

    Haptic Teleoperation of UAVs through Control Barrier Functions

    Full text link
    This paper presents a novel approach to haptic teleoperation. Specifically, we use control barrier functions (CBFs) to generate force feedback to help human operators safely fly quadrotor UAVs. CBFs take a control signal as input and output a control signal that is as close as possible to the initial control signal, while also meeting specified safety constraints. In the proposed method, we generate haptic force feedback based on the difference between a command issued by the human operator and the safe command returned by a CBF. In this way, if the user issues an unsafe control command, the haptic feedback will help guide the user towards the safe input command that is closest to their current command. We conducted a within-subject user study, in which 12 participants flew a simulated UAV in a virtual hallway environment. Participants completed the task with our proposed CBF-based haptic feedback, no haptic feedback, and haptic feedback generated via parametric risk fields, which is a state-of-the-art method described in the literature. The results of this study show that CBF-based haptic feedback can improve a human operator's ability to safely fly a UAV and reduce the operator's perceived workload, without sacrificing task efficiency

    An Optimization Approach for a Robust and Flexible Control in Collaborative Applications

    Full text link
    In Human-Robot Collaboration, the robot operates in a highly dynamic environment. Thus, it is pivotal to guarantee the robust stability of the system during the interaction but also a high flexibility of the robot behavior in order to ensure safety and reactivity to the variable conditions of the collaborative scenario. In this paper we propose a control architecture capable of maximizing the flexibility of the robot while guaranteeing a stable behavior when physically interacting with the environment. This is achieved by combining an energy tank based variable admittance architecture with control barrier functions. The proposed architecture is experimentally validated on a collaborative robot
    corecore