21 research outputs found

    Soft Handoff in MC-CDMA Cellular Networks Supporting Multimedia Services

    Get PDF
    An adaptive resource reservation and handoff priority scheme, which jointly considers the characteristics from the physical, link and network layers, is proposed for a packet switching Multicode (MC)-CDMA cellular network supporting multimedia applications. A call admission region is derived for call admission control (CAC) and handoff management with the satisfaction of quality of service (QoS) requirements for all kinds of multimedia traffic, where the QoS parameters include the wireless transmission bit error rate (BER), the packet loss rate (PLR) and delay requirement. The BER requirement is guaranteed by properly arranging simultaneous packet transmissions, whereas the PLR and delay requirements are guaranteed by the proposed packet scheduling and partial packet integration scheme. To give service priority to handoff calls, a threshold-based adaptive resource reservation scheme is proposed on the basis of a practical user mobility model and a proper handoff request prediction scheme. The resource reservation scheme gives handoff calls a higher admission priority over new calls, and is designed to adjust the reservation-request time threshold adaptively according to the varying traffic load. The individual reservation requests form a common reservation pool, and handoff calls are served on a first-come-first-serve basis. By exploiting the transmission rate adaptability of video calls to the available radio resources, the resources freed from rate-adaptive high-quality video calls by service degradation can be further used to prioritize handoff calls. With the proposed resource reservation and handoff priority scheme, the dynamic properties of the system can be closely captured and a better grade of service (GoS) in terms of new call blocking and handoff call dropping probabilities(rates) can be achieved compared to other schemes in literature. Numerical results are presented to show the improvement of the GoS performance and the efficient utilization of the radio resources

    Performance analysis of the interference adaptation dynamic channel allocation technique in wireless communication networks

    Get PDF
    Dynamic channel allocation (DCA) problem is one of the major research topics in the wireless networking area. The purpose of this technique is to relieve the contradiction between the increasing traffic load in wireless networks and the limited bandwidth resource across the air interface. The challenge of this problem comes from the following facts: a) even the basic DCA problem is shown to be NP-complete (none polynomial complete); b) the size of the state space of the problem is very large; and c) any practical DCA algorithm should run in real-time. Many heuristic DCA schemes have been proposed in the literature. It has been shown through simulation results that the interference adaptive dynamic channel allocation (IA-DCA) scheme is a promising strategy in Time Devision [sic] Multiple Accesss/Frequency Devision [sic] Multiple Accesss [sic] (TDMA/FDMA) based wireless communication systems. However, the analytical work on the IA-DCA strategy in the literature is nearly blank. The performance of a, DCA algorithm in TDMA/FDMA wireless systems is influenced by three factors: representation of the interference, traffic fluctuation, and the processing power of the algorithm. The major obstacle in analyzing IA-DCA is the computation of co-channel interference without the constraint of conventional channel reuse factors. To overcome this difficulty, one needs a representation pattern which can approximate the real interference distribution as accurately as desired, and is also computationally viable. For this purpose, a concept called channel reuse zone (CRZ) is introduced and the methodology of computing the area of a CRZ with an arbitrary, non-trivial channel reuse factor is defined. Based on this new concept, the computation of both downlink and uplink CO-channel interference is investigated with two different propagation models, namely a simplified deterministic model and a shadowing model. For the factor of the processing power, we proposed an idealized Interference Adaptation Maximum Packing (IAMP) scheme, which gives the upper bound of all IA-DCA schemes in terms of the system capacity. The effect of traffic dynamics is delt [sic] with in two steps. First, an asymptotic performance bound for the IA-DCA strategy is derived with the assumption of an arbitrarily large number of channels in the system. Then the performance bound for real wireless systems with the IA-DCA strategy is derived by alleviating this assumption. Our analytical result is compared with the performance bound drawn by Zander and Eriksson for reuse-partitioning DCA1 and some simulation results for IA-DCA in the literature. It turns out that the performance bound obtained in this work is much tighter than Zander and Eriksson\u27s bound and is in agreement with simulation results. 1only available for deterministic propagation model and downlink connection

    Efficient admission control schemes in cellular IP networks

    Get PDF
    The rapid growth of real-time multimedia applications over IP (Internet Protocol) networks has made the Quality of Service (QoS) a critical issue. One important factor affecting the QoS in the overall IP networks is the admission control in the fast expanding wireless IP networks. Due to the limitations of wireless bandwidth, wireless IP networks (cellular IP networks in particular) are generally considered to be the bottlenecks of the global IP networks. Admission control is to maintain the QoS level for the services admitted. It determines whether to admit or reject a new call request in the mobile cell based on the availability of the bandwidth. In this thesis, the term “call” is for general IP services including voice calls (VoIP) and the term “wireless IP” is used interchangeably with “cellular IP”, which means “cellular or mobile networks supporting IP applications”. In the wireless IP networks, apart from new calls, there are handoff (handover) calls which are calls moving from one cell to another. The general admission control includes the new call admission control and handoff call admission control. The desired admission control schemes should have the QoS maintained in specified levels and network resources (i.e. bandwidth in this case) are utilised efficiently. The study conducted in this thesis is on reviewing current admission control schemes and developing new schemes. Threshold Access Sharing (TAS) scheme is one of the existing schemes with good performance on general call admission. Our work started with enhancing TAS. We have proposed an improved Threshold Access Sharing (iTAS) scheme with the simplified ratebased borrowing which is an adaptive mechanism. The iTAS aims to lower handoff call dropping probability and to maximise the resource utilisation. The scheme works at the cell level (i.e. it is applied at the base station), on the basis of reserving a fixed amount of bandwidth for handoff calls. Prioritised calls can be admitted by “borrowing” bandwidth from other ongoing calls. Our simulation has shown that the new scheme has outperformed the original TAS in terms of handoff prioritisation and handling, especially for bandwidth adaptive calls. However, in iTAS, the admission decision is made solely based on bandwidth related criteria. All calls of same class are assumed having similar behaviour. In the real situation, many factors can be referred in decision making of the admission control, especially the handoff call handling. We have proposed a novice scheme, which considered multiple criteria with different weights. The total weights are used to make a decision for a handoff. These criteria are hard to be modelled in the traditional admission models. Our simulated result has demonstrated that this scheme yields better performance in terms of handoff call xiv dropping compared with iTAS. We further expand the coverage of the admission control from a cell level to a system level in the hierarchical networks. A new admission control model was built, aiming to optimise bandwidth utilisation by separating the signalling channels and traffic channels in different tiers. In the new model, handoff calls are also prioritised using call classification and admission levels. Calls belonging to a certain class follow a pre-defined admission rule. The admission levels can be adjusted to suit the traffic situation in the system. Our simulated results show that this model works better than the normal 2-tier hierarchical networks in terms of handoff calls. The model settings are adjustable to reflect real situation. Finally we conclude our research and suggest some possible future work

    Efficient resource allocation and call admission control in high capacity wireless networks

    Get PDF
    Resource Allocation (RA) and Call Admission Control (CAC) in wireless networks are processes that control the allocation of the limited radio resources to mobile stations (MS) in order to maximize the utilization efficiency of radio resources and guarantee the Quality of Service (QoS) requirements of mobile users. In this dissertation, several distributed, adaptive and efficient RA/CAC schemes are proposed and analyzed, in order to improve the system utilization while maintaining the required QoS. Since the most salient feature of the mobile wireless network is that users are moving, a Mobility Based Channel Reservation (MBCR) scheme is proposed which takes the user mobility into consideration. The MBCR scheme is further developed into PMBBR scheme by using the user location information in the reservation making process. Through traffic composition analysis, the commonly used assumption is challenged in this dissertation, and a New Call Bounding (NCB) scheme, which uses the number of channels that are currently occupied by new calls as a decision variable for the CAC, is proposed. This dissertation also investigates the pricing as another dimension for RA/CAC. It is proven that for a given wireless network there exists a new call arrival rate which can maximize the total utility of users, while maintaining the required QoS. Based on this conclusion, an integrated pricing and CAC scheme is proposed to alleviate the system congestion

    Modelling and performance evaluation of wireless and mobile communication systems in heterogeneous environments

    Get PDF
    It is widely expected that next generation wireless communication systems will be heterogeneous, integrating a wide variety of wireless access networks. Of particular interest recently is the integration of cellular networks (GSM, GPRS, UMTS, EDGE and LTE) and wireless local area networks (WLANs) to provide complementary features in terms of coverage, capacity and mobility support. These different networks will work together using vertical handover techniques and hence understanding how well these mechanisms perform is a significant issue. In this thesis, these networks are modelled to yield performance results such as mean queue lengths and blocking probabilities over a range of different conditions. The results are then analysed using network constraints to yield operational graphs based on handover probabilities to different networks. Firstly, individual networks with horizontal handover are analysed using performability techniques. The thesis moves on to look at vertical handovers between cellular networks using pure performance models. Then the integration of cellular networks and WLAN is considered. While analysing these results it became clear that the common models that were being used were subjected to handover hysteresis resulting from feedback loops in the model. A new analytical model was developed which addressed this issue but was shown to be problematic in developing state probabilities for more complicated scenarios. Guard channels analysis, which is normally used to give priority to handover traffic in mobile networks, was employed as a practical solution to the observed handover hysteresis. Overall, using different analytical techniques as well as simulation, the results of this work form an important part in the design and development of future mobile systems

    Cooperative & cost-effective network selection: a novel approach to support location-dependent & context-aware service migration in VANETs

    Get PDF
    Vehicular networking has gained considerable interest within the research community and industry. This class of mobile ad hoc network expects to play a vital role in the design and deployment of intelligent transportation systems. The research community expects to launch several innovative applications over Vehicular Ad hoc Networks (VANETs). The automotive industry is supporting the notion of pervasive connectivity by agreeing to equip vehicles with devices required for vehicular ad hoc networking. Equipped with these devices, mobile nodes in VANETs are capable of hosting many types of applications as services for other nodes in the network. These applications or services are classified as safety-critical (failure or unavailability of which may lead to a life threat) and non-safety-critical (failure of which do not lead to a life threat). Safety-critical and non-safety-critical applications need to be supported concurrently within VANETs. This research covers non-safety-critical applications since the research community has overlooked this class of applications. More specifically, this research focuses on VANETs services that are location-dependent. Due to high speed mobility, VANETs are prone to intermittent network connectivity. It is therefore envisioned that location-dependence and intermittent network connectivity are the two major challenges for VANETs to host and operate non-safety-critical VANETs services. The challenges are further exacerbated when the area where the services are to be deployed is unplanned i.e. lacks communication infrastructure and planning. Unplanned areas show irregular vehicular traffic on the road. Either network traffic flows produced by irregular vehicular traffic may lead to VANETs communication channel congestion, or it may leave the communication channel under-utilized. In both cases, this leads to communication bottlenecks within VANETs. This dissertation investigates the shortcomings of location-dependence, intermittent network connectivity and irregular network traffic flows and addresses them by exploiting location-dependent service migration over an integrated network in an efficient and cost-effective manner
    corecore