2 research outputs found

    211009

    Get PDF
    Tasks running on microprocessors with cache memories are often subjected to cache related preemption delays (CRPDs). CRPDs may significantly increase task execution times, thereby, affecting their schedulability. Schedulability analysis accounting for the impact of CRPD has been extensively studied over the past two decades for systems with a single level of cache. Yet, the literature on CRPD for multilevel non-inclusive caches is relatively scarce. Two main challenges exist when analyzing multilevel caches: (1) characterization of the indirect effect of preemption, i.e., capturing the increase in cache interference at lower cache levels (e.g., L2 cache) due to the evictions of cache content from a higher cache level (e.g., L1 cache), and (2) upper bounding the maximum CRPD suffered by tasks at lower cache levels (e.g., L2 cache), i.e., determining the cache content of tasks that can be evicted from lower cache levels in case of preemptions. Existing analysis that focus on bounding CRPD for multilevel non-inclusive caches overestimate the values of (1) and (2) leading to pessimistic worst-case response time (WCRT) estimations. In this work, we reduce the excessive pessimism of the state-of-the-art CRPD analysis for multilevel non-inclusive caches by (i) introducing the notion of multi-level useful cache blocks, i.e., cache blocks that can cause CRPD at different cache levels, and use it to compute a tighter bound on the indirect effect of preemption of tasks; and (ii) deriving a new analysis to compute tighter bounds on the CRPD of tasks at lower cache levels (e.g., L2 cache). We performed a thorough experimental evaluation using benchmarks to compare the performance of our proposed CRPD analysis against the state-of-the-art CRPD analysis. Experimental results show that our proposed CRPD analysis dominates the existing analysis and improves task set schedulability by up to 20% percentage pointsThis work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); also by the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by national funds through the FCT, within project PREFECT (POCI-01-0145-FEDER-029119); also by the European Union’s Horizon 2020 - The EU Framework Programme for Research and Innovation 2014-2020, under grant agreement No. 732505. Project ”TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01- 0145-FEDER000020” financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement.info:eu-repo/semantics/publishedVersio

    Handling Write Backs in Multi-Level Cache Analysis for WCET Estimation

    No full text
    In this paper, we investigate how to soundly analyze multi-level caches that employ write-back policy at each level for worst-case execution time (WCET) estimation. To the best of our knowledge, there is only one existing approach for dealing with write backs in multi-level cache analysis. However, as shown in the paper, this existing approach is not sound. In order to soundly handle write backs, at a cache level, we need to consider whether a memory block is potentially dirty and when such a potentially dirty block may be evicted from the cache. To this end, we introduce a dirty attribute into persistence analysis for tracking dirty blocks, and over-approximate a write back window for each possible write back. Based on the overestimated write back occurring times, we propose an approach that can soundly deal with write backs in analysis of multi-level (unifed) caches for WCET estimation. Possible write back costs are also integrated into path analysis. We evaluate the proposed approach on a set of benchmarks to demonstrate its efectiveness
    corecore