2 research outputs found

    Delay-Optimal Relay Selection in Device-to-Device Communications for Smart Grid

    Get PDF
    The smart grid communication network adopts a hierarchical structure which consists of three kinds of networks which are Home Area Networks (HANs), Neighborhood Area Networks (NANs), and Wide Area Networks (WANs). The smart grid NANs comprise of the communication infrastructure used to manage the electricity distribution to the end users. Cellular technology with LTE-based standards is a widely-used and forward-looking technology hence becomes a promising technology that can meet the requirements of different applications in NANs. However, the LTE has a limitation to cope with the data traffic characteristics of smart grid applications, thus require for enhancements. Device-to-Device (D2D) communications enable direct data transmissions between devices by exploiting the cellular resources, which could guarantee the improvement of LTE performances. Delay is one of the important communication requirements for the real-time smart grid applications. In this paper, the application of D2D communications for the smart grid NANs is investigated to improve the average end-to-end delay of the system. A relay selection algorithm that considers both the queue state and the channel state of nodes is proposed. The optimization problem is formulated as a constrained Markov decision process (CMDP) and a linear programming method is used to find the optimal policy for the CMDP problem. Simulation results are presented to prove the effectiveness of the proposed scheme

    Cellular networks for smart grid communication

    Get PDF
    The next-generation electric power system, known as smart grid, relies on a robust and reliable underlying communication infrastructure to improve the efficiency of electricity distribution. Cellular networks, e.g., LTE/LTE-A systems, appear as a promising technology to facilitate the smart grid evolution. Their inherent performance characteristics and well-established ecosystem could potentially unlock unprecedented use cases, enabling real-time and autonomous distribution grid operations. However, cellular technology was not originally intended for smart grid communication, associated with highly-reliable message exchange and massive device connectivity requirements. The fundamental differences between smart grid and human-type communication challenge the classical design of cellular networks and introduce important research questions that have not been sufficiently addressed so far. Motivated by these challenges, this doctoral thesis investigates novel radio access network (RAN) design principles and performance analysis for the seamless integration of smart grid traffic in future cellular networks. Specifically, we focus on addressing the fundamental RAN problems of network scalability in massive smart grid deployments and radio resource management for smart grid and human-type traffic. The main objective of the thesis lies on the design, analysis and performance evaluation of RAN mechanisms that would render cellular networks the key enabler for emerging smart grid applications. The first part of the thesis addresses the radio access limitations in LTE-based networks for reliable and scalable smart grid communication. We first identify the congestion problem in LTE random access that arises in large-scale smart grid deployments. To overcome this, a novel random access mechanism is proposed that can efficiently support real-time distribution automation services with negligible impact on the background traffic. Motivated by the stringent reliability requirements of various smart grid operations, we then develop an analytical model of the LTE random access procedure that allows us to assess the performance of event-based monitoring traffic under various load conditions and network configurations. We further extend our analysis to include the relation between the cell size and the availability of orthogonal random access resources and we identify an additional challenge for reliable smart grid connectivity. To this end, we devise an interference- and load-aware cell planning mechanism that enhances reliability in substation automation services. Finally, we couple the problem of state estimation in wide-area monitoring systems with the reliability challenges in information acquisition. Using our developed analytical framework, we quantify the impact of imperfect communication reliability in the state estimation accuracy and we provide useful insights for the design of reliability-aware state estimators. The second part of the thesis builds on the previous one and focuses on the RAN problem of resource scheduling and sharing for smart grid and human-type traffic. We introduce a novel scheduler that achieves low latency for distribution automation traffic while resource allocation is performed in a way that keeps the degradation of cellular users at a minimum level. In addition, we investigate the benefits of Device-to-Device (D2D) transmission mode for event-based message exchange in substation automation scenarios. We design a joint mode selection and resource allocation mechanism which results in higher data rates with respect to the conventional transmission mode via the base station. An orthogonal resource partition scheme between cellular and D2D links is further proposed to prevent the underutilization of the scarce cellular spectrum. The research findings of this thesis aim to deliver novel solutions to important RAN performance issues that arise when cellular networks support smart grid communication.Las redes celulares, p.e., los sistemas LTE/LTE-A, aparecen como una tecnolog铆a prometedora para facilitar la evoluci贸n de la pr贸xima generaci贸n del sistema el茅ctrico de potencia, conocido como smart grid (SG). Sin embargo, la tecnolog铆a celular no fue pensada originalmente para las comunicaciones en la SG, asociadas con el intercambio fiable de mensajes y con requisitos de conectividad de un n煤mero masivo de dispositivos. Las diferencias fundamentales entre las comunicaciones en la SG y la comunicaci贸n de tipo humano desaf铆an el dise帽o cl谩sico de las redes celulares e introducen importantes cuestiones de investigaci贸n que hasta ahora no se han abordado suficientemente. Motivada por estos retos, esta tesis doctoral investiga los principios de dise帽o y analiza el rendimiento de una nueva red de acceso radio (RAN) que permita una integraci贸n perfecta del tr谩fico de la SG en las redes celulares futuras. Nos centramos en los problemas fundamentales de escalabilidad de la RAN en despliegues de SG masivos, y en la gesti贸n de los recursos radio para la integraci贸n del tr谩fico de la SG con el tr谩fico de tipo humano. El objetivo principal de la tesis consiste en el dise帽o, el an谩lisis y la evaluaci贸n del rendimiento de los mecanismos de las RAN que convertir谩n a las redes celulares en el elemento clave para las aplicaciones emergentes de las SGs. La primera parte de la tesis aborda las limitaciones del acceso radio en redes LTE para la comunicaci贸n fiable y escalable en SGs. En primer lugar, identificamos el problema de congesti贸n en el acceso aleatorio de LTE que aparece en los despliegues de SGs a gran escala. Para superar este problema, se propone un nuevo mecanismo de acceso aleatorio que permite soportar de forma eficiente los servicios de automatizaci贸n de la distribuci贸n el茅ctrica en tiempo real, con un impacto insignificante en el tr谩fico de fondo. Motivados por los estrictos requisitos de fiabilidad de las diversas operaciones en la SG, desarrollamos un modelo anal铆tico del procedimiento de acceso aleatorio de LTE que nos permite evaluar el rendimiento del tr谩fico de monitorizaci贸n de la red el茅ctrica basado en eventos bajo diversas condiciones de carga y configuraciones de red. Adem谩s, ampliamos nuestro an谩lisis para incluir la relaci贸n entre el tama帽o de celda y la disponibilidad de recursos de acceso aleatorio ortogonales, e identificamos un reto adicional para la conectividad fiable en la SG. Con este fin, dise帽amos un mecanismo de planificaci贸n celular que tiene en cuenta las interferencias y la carga de la red, y que mejora la fiabilidad en los servicios de automatizaci贸n de las subestaciones el茅ctricas. Finalmente, combinamos el problema de la estimaci贸n de estado en sistemas de monitorizaci贸n de redes el茅ctricas de 谩rea amplia con los retos de fiabilidad en la adquisici贸n de la informaci贸n. Utilizando el modelo anal铆tico desarrollado, cuantificamos el impacto de la baja fiabilidad en las comunicaciones sobre la precisi贸n de la estimaci贸n de estado. La segunda parte de la tesis se centra en el problema de scheduling y compartici贸n de recursos en la RAN para el tr谩fico de SG y el tr谩fico de tipo humano. Presentamos un nuevo scheduler que proporciona baja latencia para el tr谩fico de automatizaci贸n de la distribuci贸n el茅ctrica, mientras que la asignaci贸n de recursos se realiza de un modo que mantiene la degradaci贸n de los usuarios celulares en un nivel m铆nimo. Adem谩s, investigamos los beneficios del modo de transmisi贸n Device-to-Device (D2D) en el intercambio de mensajes basados en eventos en escenarios de automatizaci贸n de subestaciones el茅ctricas. Dise帽amos un mecanismo conjunto de asignaci贸n de recursos y selecci贸n de modo que da como resultado tasas de datos m谩s elevadas con respecto al modo de transmisi贸n convencional a trav茅s de la estaci贸n base. Finalmente, se propone un esquema de partici贸n de recursos ortogonales entre enlaces celulares y D2Postprint (published version
    corecore