194 research outputs found

    Tie-breaking in Hoeffding trees

    Get PDF
    A thorough examination of the performance of Hoeffding trees, state-of-the-art in classification for data streams, on a range of datasets reveals that tie breaking, an essential but supposedly rare procedure, is employed much more than expected. Testing with a lightweight method for handling continuous attributes, we find that the excessive invocation of tie breaking causes performance to degrade significantly on complex and noisy data. Investigating ways to reduce the number of tie breaks, we propose an adaptive method that overcomes the problem while not significantly affecting performance on simpler datasets

    Improving Hoeffding Trees

    Get PDF
    Modern information technology allows information to be collected at a far greater rate than ever before. So fast, in fact, that the main problem is making sense of it all. Machine learning offers promise of a solution, but the field mainly focusses on achieving high accuracy when data supply is limited. While this has created sophisticated classification algorithms, many do not cope with increasing data set sizes. When the data set sizes get to a point where they could be considered to represent a continuous supply, or data stream, then incremental classification algorithms are required. In this setting, the effectiveness of an algorithm cannot simply be assessed by accuracy alone. Consideration needs to be given to the memory available to the algorithm and the speed at which data is processed in terms of both the time taken to predict the class of a new data sample and the time taken to include this sample in an incrementally updated classification model. The Hoeffding tree algorithm is a state-of-the-art method for inducing decision trees from data streams. The aim of this thesis is to improve this algorithm. To measure improvement, a comprehensive framework for evaluating the performance of data stream algorithms is developed. Within the framework memory size is fixed in order to simulate realistic application scenarios. In order to simulate continuous operation, classes of synthetic data are generated providing an evaluation on a large scale. Improvements to many aspects of the Hoeffding tree algorithm are demonstrated. First, a number of methods for handling continuous numeric features are compared. Second, tree prediction strategy is investigated to evaluate the utility of various methods. Finally, the possibility of improving accuracy using ensemble methods is explored. The experimental results provide meaningful comparisons of accuracy and processing speeds between different modifications of the Hoeffding tree algorithm under various memory limits. The study on numeric attributes demonstrates that sacrificing accuracy for space at the local level often results in improved global accuracy. The prediction strategy shown to perform best adaptively chooses between standard majority class and Naive Bayes prediction in the leaves. The ensemble method investigation shows that combining trees can be worthwhile, but only when sufficient memory is available, and improvement is less likely than in traditional machine learning. In particular, issues are encountered when applying the popular boosting method to streams

    Performance Analysis of Hoeffding Trees in Data Streams by Using Massive Online Analysis Framewor

    Get PDF
    Present work is mainly concerned with the understanding of the problem of classification from the data stream perspective on evolving streams using massive online analysis framework with regard to different Hoeffding trees. Advancement of the technology both in the area of hardware and software has led to the rapid storage of data in huge volumes. Such data is referred to as a data stream. Traditional data mining methods are not capable of handling data streams because of the ubiquitous nature of data streams. The challenging task is how to store, analyse and visualise such large volumes of data. Massive data mining is a solution for these challenges. In the present analysis five different Hoeffding trees are used on the available eight dataset generators of massive online analysis framework and the results predict that stagger generator happens to be the best performer for different classifiers

    Towards Efficient and Scalable Acceleration of Online Decision Tree Learning on FPGA

    Full text link
    Decision trees are machine learning models commonly used in various application scenarios. In the era of big data, traditional decision tree induction algorithms are not suitable for learning large-scale datasets due to their stringent data storage requirement. Online decision tree learning algorithms have been devised to tackle this problem by concurrently training with incoming samples and providing inference results. However, even the most up-to-date online tree learning algorithms still suffer from either high memory usage or high computational intensity with dependency and long latency, making them challenging to implement in hardware. To overcome these difficulties, we introduce a new quantile-based algorithm to improve the induction of the Hoeffding tree, one of the state-of-the-art online learning models. The proposed algorithm is light-weight in terms of both memory and computational demand, while still maintaining high generalization ability. A series of optimization techniques dedicated to the proposed algorithm have been investigated from the hardware perspective, including coarse-grained and fine-grained parallelism, dynamic and memory-based resource sharing, pipelining with data forwarding. We further present a high-performance, hardware-efficient and scalable online decision tree learning system on a field-programmable gate array (FPGA) with system-level optimization techniques. Experimental results show that our proposed algorithm outperforms the state-of-the-art Hoeffding tree learning method, leading to 0.05% to 12.3% improvement in inference accuracy. Real implementation of the complete learning system on the FPGA demonstrates a 384x to 1581x speedup in execution time over the state-of-the-art design.Comment: appear as a conference paper in FCCM 201

    MOA: Massive Online Analysis, a framework for stream classification and clustering.

    Get PDF
    Massive Online Analysis (MOA) is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA is designed to deal with the challenging problem of scaling up the implementation of state of the art algorithms to real world dataset sizes. It contains collection of offline and online for both classification and clustering as well as tools for evaluation. In particular, for classification it implements boosting, bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. For clustering, it implements StreamKM++, CluStream, ClusTree, Den-Stream, D-Stream and CobWeb. Researchers benefit from MOA by getting insights into workings and problems of different approaches, practitioners can easily apply and compare several algorithms to real world data set and settings. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and is released under the GNU GPL license
    corecore