11,499 research outputs found

    Semantic Sentiment Analysis of Twitter Data

    Full text link
    Internet and the proliferation of smart mobile devices have changed the way information is created, shared, and spreads, e.g., microblogs such as Twitter, weblogs such as LiveJournal, social networks such as Facebook, and instant messengers such as Skype and WhatsApp are now commonly used to share thoughts and opinions about anything in the surrounding world. This has resulted in the proliferation of social media content, thus creating new opportunities to study public opinion at a scale that was never possible before. Naturally, this abundance of data has quickly attracted business and research interest from various fields including marketing, political science, and social studies, among many others, which are interested in questions like these: Do people like the new Apple Watch? Do Americans support ObamaCare? How do Scottish feel about the Brexit? Answering these questions requires studying the sentiment of opinions people express in social media, which has given rise to the fast growth of the field of sentiment analysis in social media, with Twitter being especially popular for research due to its scale, representativeness, variety of topics discussed, as well as ease of public access to its messages. Here we present an overview of work on sentiment analysis on Twitter.Comment: Microblog sentiment analysis; Twitter opinion mining; In the Encyclopedia on Social Network Analysis and Mining (ESNAM), Second edition. 201

    An Empirical Analysis of the Role of Amplifiers, Downtoners, and Negations in Emotion Classification in Microblogs

    Full text link
    The effect of amplifiers, downtoners, and negations has been studied in general and particularly in the context of sentiment analysis. However, there is only limited work which aims at transferring the results and methods to discrete classes of emotions, e. g., joy, anger, fear, sadness, surprise, and disgust. For instance, it is not straight-forward to interpret which emotion the phrase "not happy" expresses. With this paper, we aim at obtaining a better understanding of such modifiers in the context of emotion-bearing words and their impact on document-level emotion classification, namely, microposts on Twitter. We select an appropriate scope detection method for modifiers of emotion words, incorporate it in a document-level emotion classification model as additional bag of words and show that this approach improves the performance of emotion classification. In addition, we build a term weighting approach based on the different modifiers into a lexical model for the analysis of the semantics of modifiers and their impact on emotion meaning. We show that amplifiers separate emotions expressed with an emotion- bearing word more clearly from other secondary connotations. Downtoners have the opposite effect. In addition, we discuss the meaning of negations of emotion-bearing words. For instance we show empirically that "not happy" is closer to sadness than to anger and that fear-expressing words in the scope of downtoners often express surprise.Comment: Accepted for publication at The 5th IEEE International Conference on Data Science and Advanced Analytics (DSAA), https://dsaa2018.isi.it

    Social Emotion Mining Techniques for Facebook Posts Reaction Prediction

    Full text link
    As of February 2016 Facebook allows users to express their experienced emotions about a post by using five so-called `reactions'. This research paper proposes and evaluates alternative methods for predicting these reactions to user posts on public pages of firms/companies (like supermarket chains). For this purpose, we collected posts (and their reactions) from Facebook pages of large supermarket chains and constructed a dataset which is available for other researches. In order to predict the distribution of reactions of a new post, neural network architectures (convolutional and recurrent neural networks) were tested using pretrained word embeddings. Results of the neural networks were improved by introducing a bootstrapping approach for sentiment and emotion mining on the comments for each post. The final model (a combination of neural network and a baseline emotion miner) is able to predict the reaction distribution on Facebook posts with a mean squared error (or misclassification rate) of 0.135.Comment: 10 pages, 13 figures and accepted at ICAART 2018. (Dataset: https://github.com/jerryspan/FacebookR
    • …
    corecore