164,966 research outputs found
Mobile Computing in Physics Analysis - An Indicator for eScience
This paper presents the design and implementation of a Grid-enabled physics
analysis environment for handheld and other resource-limited computing devices
as one example of the use of mobile devices in eScience. Handheld devices offer
great potential because they provide ubiquitous access to data and
round-the-clock connectivity over wireless links. Our solution aims to provide
users of handheld devices the capability to launch heavy computational tasks on
computational and data Grids, monitor the jobs status during execution, and
retrieve results after job completion. Users carry their jobs on their handheld
devices in the form of executables (and associated libraries). Users can
transparently view the status of their jobs and get back their outputs without
having to know where they are being executed. In this way, our system is able
to act as a high-throughput computing environment where devices ranging from
powerful desktop machines to small handhelds can employ the power of the Grid.
The results shown in this paper are readily applicable to the wider eScience
community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing
& Ubiquitous Networking (ICMU06. London October 200
Transparent resource sharing framework for internet services on handheld devices
Handheld devices have limited processing power and a short battery lifetime. As a result, computationally intensive applications cannot run appropriately or cause the device to run out of battery too early. Additionally, Internet-based service providers targeting these mobile devices lack information to estimate the remaining battery autonomy and have no view on the availability of idle resources in the neighborhood of the handheld device. These battery-related issues create an opportunity for Internet providers to broaden their role and start managing energy aspects of battery-driven mobile devices inside the home. In this paper, we propose an energy-aware resource-sharing framework that enables Internet access providers to delegate (a part of) a client application from a handheld device to idle resources in the LAN, in a transparent way for the end-user. The key component is the resource sharing service, hosted on the LAN gateway, which can be remotely queried and managed by the Internet access provider. The service includes a battery model to predict the remaining battery lifetime. We describe the concept of resource-sharing-as-a-service that allows users of handheld devices to subscribe to the resource sharing service. In a proof-of-concept, we evaluate the delay to offload a client application to an idle computer and study the impact on battery autonomy as a function of the CPU cycles that can be offloaded
A Handheld low-mass, impact instrument to measure nondestructive firmness of fruit
A portable, handheld impact firmness sensor was designed for nondestructive measurement of fruit firmness while the fruit remain attached to the tree or for use in other remote locations where the use of a benchtop instrument would be impractical. The instrument design was based on the low-mass, constant velocity, impact-type measurement concept. Validation tests of the handheld sensor using `Bartlett' pears from orchards in California and Washington showed excellent agreement (r2 = 0.92 and 0.96, respectively) with both ASAE Standard method S368.2 for determining the apparent modulus of intact fruit and the impact firmness scores from a commercial benchtop impact firmness instrument
Drivers for wireless handheld technology: views from Queensland nurses
[Abstract]:
The use of wireless hand held devices is becoming popular in healthcare due to its flexibility and mobility. In the nursing domain, the use of handheld devices, a specific
component of wireles technology appears to be beneficial for data collection and other information management functions nurses may undertake. Studies in nursing
literature have indicated that handheld devices deliver advantages and benefits at the point of care. In this study a set of 30 interviews with Queensland Nursing Staff in one district health centre was conducted over a period of three months to establish the drivers for the introduction of wireless technology among nurses. The outcome of these interviews is developed into a preliminary model and reported in this paper
Performance analysis of time slicing in DVB-H
TV is the biggest media and the last one missing from mobile phones. Digital Video Broadcasting for Handhelds (DVB-H) is the latest development from the DVB Project targeting handheld, battery powered devices such as mobile telephones, PDAs(Personal Digital Assistants), etc. Time Division Multiplexing (TDM) is the technology that is usually used in computer and telecommunication systems. Time slicing is one of the characteristics that makes it possible to broadcast high resolution TV programes and fast IP data services to battery powered handheld terminals. This paper discusses the characteristics and advantages of Time slicing algorithm in DVB-H and presents the performance analysis of time slicing in DVB-H through both theoretical analysis and software simulation
GpsTunes: controlling navigation via audio feedback
We combine the functionality of a mobile Global Positioning System (GPS) with that of an MP3 player, implemented on a PocketPC, to produce a handheld system capable of guiding a user to their desired target location via continuously adapted music feedback. We illustrate how the approach to presentation of the audio display can benefit from insights from control theory, such as predictive 'browsing' elements to the display, and the appropriate representation of uncertainty or ambiguity in the display. The probabilistic interpretation of the navigation task can be generalised to other context-dependent mobile applications. This is the first example of a completely handheld location- aware music player. We discuss scenarios for use of such systems
mLearning: the classroom in your pocket?
This paper reports the findings of a 1 year project which focussed solely on the potential of handheld computers for teacher professional development. The paper considers the fit between theory and practice, viewing the developing literature on mLearning as it might apply to teacher professional development, in the light of research evidence from project teachers using handheld computers. The teachers themselves used the analytical framework for teacher professional knowledge developed by Banks, Leach and Moon to consider their own experiences with the handheld computers. The study finds that handheld digital tools hold a number of pedagogic and pragmatic advantages over laptop or desktop computers for teachers, especially in rural communities; however, further technical development is required to fully orient the devices to classroom rather than office practices
- …
