1,267,737 research outputs found

    Synergy-Based Hand Pose Sensing: Optimal Glove Design

    Get PDF
    In this paper we study the problem of improving human hand pose sensing device performance by exploiting the knowledge on how humans most frequently use their hands in grasping tasks. In a companion paper we studied the problem of maximizing the reconstruction accuracy of the hand pose from partial and noisy data provided by any given pose sensing device (a sensorized "glove") taking into account statistical a priori information. In this paper we consider the dual problem of how to design pose sensing devices, i.e. how and where to place sensors on a glove, to get maximum information about the actual hand posture. We study the continuous case, whereas individual sensing elements in the glove measure a linear combination of joint angles, the discrete case, whereas each measure corresponds to a single joint angle, and the most general hybrid case, whereas both continuous and discrete sensing elements are available. The objective is to provide, for given a priori information and fixed number of measurements, the optimal design minimizing in average the reconstruction error. Solutions relying on the geometrical synergy definition as well as gradient flow-based techniques are provided. Simulations of reconstruction performance show the effectiveness of the proposed optimal design.Comment: Submitted to International Journal of Robotics Research 201

    Learning to Estimate 3D Hand Pose from Single RGB Images

    Full text link
    Low-cost consumer depth cameras and deep learning have enabled reasonable 3D hand pose estimation from single depth images. In this paper, we present an approach that estimates 3D hand pose from regular RGB images. This task has far more ambiguities due to the missing depth information. To this end, we propose a deep network that learns a network-implicit 3D articulation prior. Together with detected keypoints in the images, this network yields good estimates of the 3D pose. We introduce a large scale 3D hand pose dataset based on synthetic hand models for training the involved networks. Experiments on a variety of test sets, including one on sign language recognition, demonstrate the feasibility of 3D hand pose estimation on single color images.Comment: Accepted to ICCV 2017. Code and dataset is released: https://lmb.informatik.uni-freiburg.de/projects/hand3d

    BigHand2.2M Benchmark: Hand Pose Dataset and State of the Art Analysis

    Full text link
    In this paper we introduce a large-scale hand pose dataset, collected using a novel capture method. Existing datasets are either generated synthetically or captured using depth sensors: synthetic datasets exhibit a certain level of appearance difference from real depth images, and real datasets are limited in quantity and coverage, mainly due to the difficulty to annotate them. We propose a tracking system with six 6D magnetic sensors and inverse kinematics to automatically obtain 21-joints hand pose annotations of depth maps captured with minimal restriction on the range of motion. The capture protocol aims to fully cover the natural hand pose space. As shown in embedding plots, the new dataset exhibits a significantly wider and denser range of hand poses compared to existing benchmarks. Current state-of-the-art methods are evaluated on the dataset, and we demonstrate significant improvements in cross-benchmark performance. We also show significant improvements in egocentric hand pose estimation with a CNN trained on the new dataset

    3-D Hand Pose Estimation from Kinect's Point Cloud Using Appearance Matching

    Full text link
    We present a novel appearance-based approach for pose estimation of a human hand using the point clouds provided by the low-cost Microsoft Kinect sensor. Both the free-hand case, in which the hand is isolated from the surrounding environment, and the hand-object case, in which the different types of interactions are classified, have been considered. The hand-object case is clearly the most challenging task having to deal with multiple tracks. The approach proposed here belongs to the class of partial pose estimation where the estimated pose in a frame is used for the initialization of the next one. The pose estimation is obtained by applying a modified version of the Iterative Closest Point (ICP) algorithm to synthetic models to obtain the rigid transformation that aligns each model with respect to the input data. The proposed framework uses a "pure" point cloud as provided by the Kinect sensor without any other information such as RGB values or normal vector components. For this reason, the proposed method can also be applied to data obtained from other types of depth sensor, or RGB-D camera
    corecore