1,835 research outputs found

    GEMINI: A Generic Multi-Modal Natural Interface Framework for Videogames

    Full text link
    In recent years videogame companies have recognized the role of player engagement as a major factor in user experience and enjoyment. This encouraged a greater investment in new types of game controllers such as the WiiMote, Rock Band instruments and the Kinect. However, the native software of these controllers was not originally designed to be used in other game applications. This work addresses this issue by building a middleware framework, which maps body poses or voice commands to actions in any game. This not only warrants a more natural and customized user-experience but it also defines an interoperable virtual controller. In this version of the framework, body poses and voice commands are respectively recognized through the Kinect's built-in cameras and microphones. The acquired data is then translated into the native interaction scheme in real time using a lightweight method based on spatial restrictions. The system is also prepared to use Nintendo's Wiimote as an auxiliary and unobtrusive gamepad for physically or verbally impractical commands. System validation was performed by analyzing the performance of certain tasks and examining user reports. Both confirmed this approach as a practical and alluring alternative to the game's native interaction scheme. In sum, this framework provides a game-controlling tool that is totally customizable and very flexible, thus expanding the market of game consumers.Comment: WorldCIST'13 Internacional Conferenc

    Single camera pose estimation using Bayesian filtering and Kinect motion priors

    Full text link
    Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.Comment: 25 pages, Technical report, related to Burke and Lasenby, AMDO 2014 conference paper. Code sample: https://github.com/mgb45/SignerBodyPose Video: https://www.youtube.com/watch?v=dJMTSo7-uF

    DeepASL: Enabling Ubiquitous and Non-Intrusive Word and Sentence-Level Sign Language Translation

    Full text link
    There is an undeniable communication barrier between deaf people and people with normal hearing ability. Although innovations in sign language translation technology aim to tear down this communication barrier, the majority of existing sign language translation systems are either intrusive or constrained by resolution or ambient lighting conditions. Moreover, these existing systems can only perform single-sign ASL translation rather than sentence-level translation, making them much less useful in daily-life communication scenarios. In this work, we fill this critical gap by presenting DeepASL, a transformative deep learning-based sign language translation technology that enables ubiquitous and non-intrusive American Sign Language (ASL) translation at both word and sentence levels. DeepASL uses infrared light as its sensing mechanism to non-intrusively capture the ASL signs. It incorporates a novel hierarchical bidirectional deep recurrent neural network (HB-RNN) and a probabilistic framework based on Connectionist Temporal Classification (CTC) for word-level and sentence-level ASL translation respectively. To evaluate its performance, we have collected 7,306 samples from 11 participants, covering 56 commonly used ASL words and 100 ASL sentences. DeepASL achieves an average 94.5% word-level translation accuracy and an average 8.2% word error rate on translating unseen ASL sentences. Given its promising performance, we believe DeepASL represents a significant step towards breaking the communication barrier between deaf people and hearing majority, and thus has the significant potential to fundamentally change deaf people's lives

    Kinect vs. low-cost inertial sensing for gesture recognition

    Get PDF
    In this paper, we investigate efficient recognition of human gestures / movements from multimedia and multimodal data, including the Microsoft Kinect and translational and rotational acceleration and velocity from wearable inertial sensors. We firstly present a system that automatically classifies a large range of activities (17 different gestures) using a random forest decision tree. Our system can achieve near real time recognition by appropriately selecting the sensors that led to the greatest contributing factor for a particular task. Features extracted from multimodal sensor data were used to train and evaluate a customized classifier. This novel technique is capable of successfully classifying various gestures with up to 91 % overall accuracy on a publicly available data set. Secondly we investigate a wide range of different motion capture modalities and compare their results in terms of gesture recognition accuracy using our proposed approach. We conclude that gesture recognition can be effectively performed by considering an approach that overcomes many of the limitations associated with the Kinect and potentially paves the way for low-cost gesture recognition in unconstrained environments

    RGB-D-based Action Recognition Datasets: A Survey

    Get PDF
    Human action recognition from RGB-D (Red, Green, Blue and Depth) data has attracted increasing attention since the first work reported in 2010. Over this period, many benchmark datasets have been created to facilitate the development and evaluation of new algorithms. This raises the question of which dataset to select and how to use it in providing a fair and objective comparative evaluation against state-of-the-art methods. To address this issue, this paper provides a comprehensive review of the most commonly used action recognition related RGB-D video datasets, including 27 single-view datasets, 10 multi-view datasets, and 7 multi-person datasets. The detailed information and analysis of these datasets is a useful resource in guiding insightful selection of datasets for future research. In addition, the issues with current algorithm evaluation vis-\'{a}-vis limitations of the available datasets and evaluation protocols are also highlighted; resulting in a number of recommendations for collection of new datasets and use of evaluation protocols
    corecore