9,290 research outputs found

    Extracting curve-skeletons from digital shapes using occluding contours

    Get PDF
    Curve-skeletons are compact and semantically relevant shape descriptors, able to summarize both topology and pose of a wide range of digital objects. Most of the state-of-the-art algorithms for their computation rely on the type of geometric primitives used and sampling frequency. In this paper we introduce a formally sound and intuitive definition of curve-skeleton, then we propose a novel method for skeleton extraction that rely on the visual appearance of the shapes. To achieve this result we inspect the properties of occluding contours, showing how information about the symmetry axes of a 3D shape can be inferred by a small set of its planar projections. The proposed method is fast, insensitive to noise, capable of working with different shape representations, resolution insensitive and easy to implement

    Skeletons of stable maps II: Superabundant geometries

    Get PDF
    We implement new techniques involving Artin fans to study the realizability of tropical stable maps in superabundant combinatorial types. Our approach is to understand the skeleton of a fundamental object in logarithmic Gromov--Witten theory -- the stack of prestable maps to the Artin fan. This is used to examine the structure of the locus of realizable tropical curves and derive 3 principal consequences. First, we prove a realizability theorem for limits of families of tropical stable maps. Second, we extend the sufficiency of Speyer's well-spacedness condition to the case of curves with good reduction. Finally, we demonstrate the existence of liftable genus 1 superabundant tropical curves that violate the well-spacedness condition.Comment: 17 pages, 1 figure. v2 fixes a minor gap in the proof of Theorem D and adds details to the construction of the skeleton of a toroidal Artin stack. Minor clarifications throughout. To appear in Research in the Mathematical Science

    Patch-type Segmentation of Voxel Shapes using Simplified Surface Skeletons

    Get PDF
    We present a new method for decomposing a 3D voxel shape into disjoint segments using the shape’s simplified surface-skeleton. The surface skeleton of a shape consists of 2D manifolds inside its volume. Each skeleton point has a maximally inscribed ball that touches the boundary in at least two contact points. A key observation is that the boundaries of the simplified fore- and background skeletons map one-to-one to increasingly fuzzy, soft convex, respectively concave, edges of the shape. Using this property, we build a method for segmentation of 3D shapes which has several desirable properties. Our method segments both noisy shapes and shapes with soft edges which vanish over low-curvature regions. Multiscale segmentations can be obtained by varying the simplification level of the skeleton. We present a voxel-based implementation of our approach and illustrate it on several realistic examples.

    Essential skeletons of pairs and the geometric P=W conjecture

    Full text link
    We construct weight functions on the Berkovich analytification of a variety over a trivially-valued field of characteristic zero, and this leads to the definition of the Kontsevich-Soibelman skeletons and the essential skeletons of pairs. We prove that the weight functions determine a metric on the pluricanonical bundles which coincides with Temkin's canonical metric in the smooth case. The weight functions are defined in terms of log discrepancies, which makes the Kontsevich-Soibelman and essential skeletons computable: this allows us to relate the essential skeleton to its discretely-valued counterpart, and explicitly describe the closure of the Kontsevich-Soibelman skeletons. As a result, we employ these techniques to compute the dual boundary complexes of certain character varieties: this provides the first evidence for the geometric P=W conjecture in the compact case, and the first application of Berkovich geometry in non-abelian Hodge theory.Comment: Sections 1.6-1.7 rewritten and minor changes in Sections 6-

    The fully connected N-dimensional skeleton: probing the evolution of the cosmic web

    Full text link
    A method to compute the full hierarchy of the critical subsets of a density field is presented. It is based on a watershed technique and uses a probability propagation scheme to improve the quality of the segmentation by circumventing the discreteness of the sampling. It can be applied within spaces of arbitrary dimensions and geometry. This recursive segmentation of space yields, for a dd-dimensional space, a d1d-1 succession of nn-dimensional subspaces that fully characterize the topology of the density field. The final 1D manifold of the hierarchy is the fully connected network of the primary critical lines of the field : the skeleton. It corresponds to the subset of lines linking maxima to saddle points, and provides a definition of the filaments that compose the cosmic web as a precise physical object, which makes it possible to compute any of its properties such as its length, curvature, connectivity etc... When the skeleton extraction is applied to initial conditions of cosmological N-body simulations and their present day non linear counterparts, it is shown that the time evolution of the cosmic web, as traced by the skeleton, is well accounted for by the Zel'dovich approximation. Comparing this skeleton to the initial skeleton undergoing the Zel'dovich mapping shows that two effects are competing during the formation of the cosmic web: a general dilation of the larger filaments that is captured by a simple deformation of the skeleton of the initial conditions on the one hand, and the shrinking, fusion and disappearance of the more numerous smaller filaments on the other hand. Other applications of the N dimensional skeleton and its peak patch hierarchy are discussed.Comment: Accepted for publication in MNRA

    Self-Attractive Random Walks: The Case of Critical Drifts

    Full text link
    Self-attractive random walks undergo a phase transition in terms of the applied drift: If the drift is strong enough, then the walk is ballistic, whereas in the case of small drifts self-attraction wins and the walk is sub-ballistic. We show that, in any dimension at least 2, this transition is of first order. In fact, we prove that the walk is already ballistic at critical drifts, and establish the corresponding LLN and CLT.Comment: Final version sent to the publisher. To appear in Communications in Mathematical Physic
    corecore