33 research outputs found

    Gauge Transformations, Twisted Poisson Brackets and Hamiltonization of Nonholonomic Systems

    Full text link
    In this paper we study the problem of Hamiltonization of nonholonomic systems from a geometric point of view. We use gauge transformations by 2-forms (in the sense of Severa and Weinstein [29]) to construct different almost Poisson structures describing the same nonholonomic system. In the presence of symmetries, we observe that these almost Poisson structures, although gauge related, may have fundamentally different properties after reduction, and that brackets that Hamiltonize the problem may be found within this family. We illustrate this framework with the example of rigid bodies with generalized rolling constraints, including the Chaplygin sphere rolling problem. We also see how twisted Poisson brackets appear naturally in nonholonomic mechanics through these examples

    Hamiltonization and Integrability of the Chaplygin Sphere in R^n

    Full text link
    The paper studies a natural nn-dimensional generalization of the classical nonholonomic Chaplygin sphere problem. We prove that for a specific choice of the inertia operator, the restriction of the generalized problem onto zero value of the SO(n-1)-momentum mapping becomes an integrable Hamiltonian system after an appropriate time reparametrization.Comment: 22 pages, Sections 1 and 5 are rewritten, to appear in Journal of Nonlinear Scienc

    Quasi-Chaplygin Systems and Nonholonimic Rigid Body Dynamics

    Full text link
    We show that the Suslov nonholonomic rigid body problem can be regarded almost everywhere as a generalized Chaplygin system. Furthermore, this provides a new example of a multidimensional nonholonomic system which can be reduced to a Hamiltonian form by means of Chaplygin reducing multiplier. Since we deal with Chaplygin systems in the local sense, the invariant manifolds of the integrable examples are not necessary tori.Comment: minor changes, to appear in Letters in Mathematical Physic

    Hamiltonisation, measure preservation and first integrals of the multi-dimensional rubber Routh sphere

    Full text link
    We consider the multi-dimensional generalisation of the problem of a sphere, with axi-symmetric mass distribution, that rolls without slipping or spinning over a plane. Using recent results from Garc\'ia-Naranjo (arXiv: 1805:06393) and Garc\'ia-Naranjo and Marrero (arXiv: 1812.01422), we show that the reduced equations of motion possess an invariant measure and may be represented in Hamiltonian form by Chaplygin's reducing multiplier method. We also prove a general result on the existence of first integrals for certain Hamiltonisable Chaplygin systems with internal symmetries that is used to determine conserved quantities of the problem.Comment: 23 pages, 1 figure. Submitted to the special issue of Theor. Appl. Mech. in honour of Chaplygin's 150th anniversar
    corecore