6 research outputs found

    A closure concept based on neighborhood unions of independent triples

    Get PDF
    The well-known closure concept of Bondy and Chvatal is based on degree-sums of pairs of nonadjacent (independent) vertices. We show that a more general concept due to Ainouche and Christofides can be restated in terms of degree-sums of independent triples. We introduce a closure concept which is based on neighborhood unions of independent triples and which also generalizes the closure concept of Bondy and Chvatal

    Long cycles, degree sums and neighborhood unions

    Get PDF
    AbstractFor a graph G, define the parameters α(G)=max{|S| |S is an independent set of vertices of G}, σk(G)=min{∑ki=1d(vi)|{v1,…,vk} is an independent set} and NCk(G)= min{|∪ki=1 N(vi)∥{v1,…,vk} is an independent set} (k⩾2). It is shown that every 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,n+NCr+5+∈(n+r)(G)-α(G)}, where ε(i)=3(⌈13i⌉−13i). This result extends previous results in Bauer et al. (1989/90), Faßbender (1992) and Flandrin et al. (1991). It is also shown that a 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,2NC⌊18(n+6r+17)⌋(G)}. Analogous results are established for 2-connected graphs

    Hamiltonian paths and hamiltonian connectivity in graphs

    Get PDF
    AbstractLet G be a 2-connected graph with n vertices such that d(u)+d(v)+d(w)-|N(u)∩N(v)∩N(w)| ⩾n + 1 holds for any triple of independent vertices u, v and w. Then for any distinct vertices u and v such that {u, v} is not a cut vertex set of G, there is a hamiltonian path between u and v. In particular, if G is 3-connected, then G is hamiltonian-connected. This is closely related to the main result in Flandrin et al. (1991) and generalizes a theorem of Ore (1963) and a theorem of Faudree et al. (1989)

    Hamiltonian properties of graphs with large neighborhood unions

    Get PDF
    AbstractLet G be a graph of order n, σk = min{ϵi=1kd(νi): {ν1,…, νk} is an independent set of vertices in G}, NC = min{|N(u)∪ N(ν)|: uν∉E(G)} and NC2 = min{|N(u)∪N(ν)|: d(u,ν)=2}. Ore proved that G is hamiltonian if σ2⩾n⩾3, while Faudree et al. proved that G is hamiltonian if G is 2-connected and NC⩾13(2n−1). It is shown that both results are generalized by a recent result of Bauer et al. Various other existing results in hamiltonian graph theory involving degree-sums or cardinalities of neighborhood unions are also compared in terms of generality. Furthermore, some new results are proved. In particular, it is shown that the bound 13(2n−1) on NC in the result of Faudree et al. can be lowered to 13(2n−1), which is best possible. Also, G is shown to have a cycle of length at least min{n, 2(NC2)} if G is 2-connected and σ3⩾n+2. A Dλ-cycle (Dλ-path) of G is a cycle (path) C such that every component of G−V(C) has order smaller than λ. Sufficient conditions of Lindquester for the existence of Hamilton cycles and paths involving NC2 are extended to Dλ-cycles and Dλ-paths

    Subject Index Volumes 1–200

    Get PDF
    corecore