327,018 research outputs found

    On interconnections of infinite-dimensional port-Hamiltonian systems

    Get PDF
    Network modeling of complex physical systems leads to a class of nonlinear systems called port-Hamiltonian systems, which are defined with respect to a Dirac structure (a geometric structure which formalizes the power-conserving interconnection structure of the system). A power conserving interconnection of Dirac structures is again a Dirac structure. In this paper we study interconnection properties of mixed finite and infinite dimensional port-Hamiltonian systems and show that this interconnection again defines a port-Hamiltonian system. We also investigate which closed-loop port-Hamiltonian systems can be achieved by power conserving interconnections of finite and infinite dimensional port-Hamiltonian systems. Finally we study these results with particular reference to the transmission line

    Hamiltonian structure of Hamiltonian chaos

    Get PDF
    From a kinematical point of view, the geometrical information of hamiltonian chaos is given by the (un)stable directions, while the dynamical information is given by the Lyapunov exponents. The finite time Lyapunov exponents are of particular importance in physics. The spatial variations of the finite time Lyapunov exponent and its associated (un)stable direction are related. Both of them are found to be determined by a new hamiltonian of same number of degrees of freedom as the original one. This new hamiltonian defines a flow field with characteristically chaotic trajectories. The direction and the magnitude of the phase flow field give the (un)stable direction and the finite time Lyapunov exponent of the original hamiltonian. Our analysis was based on a 1121{1\over 2} degree of freedom hamiltonian system

    Degenerate Frobenius manifolds and the bi-Hamiltonian structure of rational Lax equations

    Full text link
    The bi-Hamiltonian structure of certain multi-component integrable systems, generalizations of the dispersionless Toda hierarchy, is studies for systems derived from a rational Lax function. One consequence of having a rational rather than a polynomial Lax function is that the corresponding bi-Hamiltonian structures are degenerate, i.e. the metric which defines the Hamiltonian structure has vanishing determinant. Frobenius manifolds provide a natural setting in which to study the bi-Hamiltonian structure of certain classes of hydrodynamic systems. Some ideas on how this structure may be extanded to include degenerate bi-Hamiltonian structures, such as those given in the first part of the paper, are given.Comment: 28 pages, LaTe

    Input-output decoupling of Hamiltonian systems: The linear case

    Get PDF
    In this note we give necessary and sufficient conditions for a linear Hamiltonian system to be input-output decouplable by Hamiltonian feedback, i.e. feedback that preserves the Hamiltonian structure. In a second paper we treat the same problem for nonlinear Hamiltonian systems

    Poisson integrators

    Full text link
    An overview of Hamiltonian systems with noncanonical Poisson structures is given. Examples of bi-Hamiltonian ode's, pde's and lattice equations are presented. Numerical integrators using generating functions, Hamiltonian splitting, symplectic Runge-Kutta methods are discussed for Lie-Poisson systems and Hamiltonian systems with a general Poisson structure. Nambu-Poisson systems and the discrete gradient methods are also presented.Comment: 30 page
    corecore