5 research outputs found

    A Comprehensive Review of Deep Learning-based Single Image Super-resolution

    Get PDF
    Image super-resolution (SR) is one of the vital image processing methods that improve the resolution of an image in the field of computer vision. In the last two decades, significant progress has been made in the field of super-resolution, especially by utilizing deep learning methods. This survey is an effort to provide a detailed survey of recent progress in single-image super-resolution in the perspective of deep learning while also informing about the initial classical methods used for image super-resolution. The survey classifies the image SR methods into four categories, i.e., classical methods, supervised learning-based methods, unsupervised learning-based methods, and domain-specific SR methods. We also introduce the problem of SR to provide intuition about image quality metrics, available reference datasets, and SR challenges. Deep learning-based approaches of SR are evaluated using a reference dataset. Some of the reviewed state-of-the-art image SR methods include the enhanced deep SR network (EDSR), cycle-in-cycle GAN (CinCGAN), multiscale residual network (MSRN), meta residual dense network (Meta-RDN), recurrent back-projection network (RBPN), second-order attention network (SAN), SR feedback network (SRFBN) and the wavelet-based residual attention network (WRAN). Finally, this survey is concluded with future directions and trends in SR and open problems in SR to be addressed by the researchers.Comment: 56 Pages, 11 Figures, 5 Table

    Face Hallucination via Deep Neural Networks.

    Get PDF
    We firstly address aligned low-resolution (LR) face images (i.e. 16X16 pixels) by designing a discriminative generative network, named URDGN. URDGN is composed of two networks: a generative model and a discriminative model. We introduce a pixel-wise L2 regularization term to the generative model and exploit the feedback of the discriminative network to make the upsampled face images more similar to real ones. We present an end-to-end transformative discriminative neural network (TDN) devised for super-resolving unaligned tiny face images. TDN embeds spatial transformation layers to enforce local receptive fields to line-up with similar spatial supports. To upsample noisy unaligned LR face images, we propose decoder-encoder-decoder networks. A transformative discriminative decoder network is employed to upsample and denoise LR inputs simultaneously. Then we project the intermediate HR faces to aligned and noise-free LR faces by a transformative encoder network. Finally, high-quality hallucinated HR images are generated by our second decoder. Furthermore, we present an end-to-end multiscale transformative discriminative neural network (MTDN) to super-resolve unaligned LR face images of different resolutions in a unified framework. We propose a method that explicitly incorporates structural information of faces into the face super-resolution process by using a multi-task convolutional neural network (CNN). Our method not only uses low-level information (i.e. intensity similarity), but also middle-level information (i.e. face structure) to further explore spatial constraints of facial components from LR inputs images. We demonstrate that supplementing residual images or feature maps with additional facial attribute information can significantly reduce the ambiguity in face super-resolution. To explore this idea, we develop an attribute-embedded upsampling network. In this manner, our method is able to super-resolve LR faces by a large upscaling factor while reducing the uncertainty of one-to-many mappings remarkably. We further push the boundaries of hallucinating a tiny, non-frontal face image to understand how much of this is possible by leveraging the availability of large datasets and deep networks. To this end, we introduce a novel Transformative Adversarial Neural Network (TANN) to jointly frontalize very LR out-of-plane rotated face images (including profile views) and aggressively super-resolve them by 8X, regardless of their original poses and without using any 3D information. Besides recovering an HR face images from an LR version, this thesis also addresses the task of restoring realistic faces from stylized portrait images, which can also be regarded as face hallucination
    corecore