11 research outputs found
Halloween genes in panarthropods and the evolution of the early moulting pathway in Ecdysozoa
Gefördert durch den Publikationsfonds der Universität Kasse
Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom
A crab is not a fish: unique aspects of the crustacean endocrine system and considerations for endocrine toxicology
International audienceCrustaceans—and arthropods in general—exhibit many unique aspects to their physiology. These include the requirement to moult (ecdysis) in order to grow and reproduce, the ability to change color, and multiple strategies for sexual differentiation. Accordingly, the endocrine regulation of these processes involves hormones, receptors, and enzymes that differ from those utilized by vertebrates and other non-arthropod invertebrates. As a result, environmental chemicals known to disrupt endocrine processes in vertebrates are often not endocrine disruptors in crustaceans; while, chemicals that disrupt endocrine processes in crustaceans are often not endocrine disruptors in vertebrates. In this review, we present an overview of the evolution of the endocrine system of crustaceans, highlight endocrine endpoints known to be a target of disruption by chemicals, and identify other components of endocrine signaling that may prove to be targets of disruption. This review highlights that crustaceans need to be evaluated for endocrine disruption with consideration of their unique endocrine system and not with consideration of the endocrine system of vertebrates
Diversity and evolution of the P450 family in arthropods
The P450 family (CYP genes) of arthropods encodes diverse enzymes involved in the metabolism of foreign compounds and in essential endocrine or ecophysiological functions. The P450 sequences (CYPome) from 40 arthropod species were manually curated, including 31 complete CYPomes, and a maximum likelihood phylogeny of nearly 3000 sequences is presented. Arthropod CYPomes are assembled from members of six CYP clans of variable size, the CYP2, CYP3, CYP4 and mitochondrial clans, as well as the CYP20 and CYP16 clans that are not found in Neoptera. CYPome sizes vary from two dozen genes in some parasitic species to over 200 in species as diverse as collembolans or ticks. CYPomes are comprised of few CYP families with many genes and many CYP families with few genes, and this distribution is the result of dynamic birth and death processes. Lineage-specific expansions or blooms are found throughout the phylogeny and often result in genomic clusters that appear to form a reservoir of catalytic diversity maintained as heritable units. Among the many P450s with physiological functions, six CYP families are involved in ecdysteroid metabolism. However, five so-called Halloween genes are not universally represented and do not constitute the unique pathway of ecdysteroid biosynthesis. The diversity of arthropod CYPomes has only partially been uncovered to date and many P450s with physiological functions regulating the synthesis and degradation of endogenous signal molecules (including ecdysteroids) and semiochemicals (including pheromones and defense chemicals) remain to be discovered. Sequence diversity of arthropod P450s is extreme, and P450 sequences lacking the universally conserved Cys ligand to the heme have evolved several times. A better understanding of P450 evolution is needed to discern the relative contributions of stochastic processes and adaptive processes in shaping the size and diversity of CYPomes
A multiscale approach reveals elaborate circulatory system and intermittent heartbeat in velvet worms (Onychophora)
Gefördert durch den Publikationsfonds der Universität Kasse
The moulting arthropod: a complete genetic toolkit review.
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting
The Toxicogenome of Hyalella azteca:A Model for Sediment Ecotoxicology and Evolutionary Toxicology
File F1 from Halloween genes in panarthropods and the evolution of the early moulting pathway in Ecdysozoa
List of species names and genes with NCBI or UniProt accession number used for phylogenetic analyses of neverland, Halloween genes, nuclear receptor genes, Early genes, and CYP18A1. Identified sequences of Euperipatoides rowelli (Onychophora) and Hypsibius exemplaris (Tardigrada) are included on table 7 and 8, respectively
Figure S3 from Halloween genes in panarthropods and the evolution of the early moulting pathway in Ecdysozoa
Uncondensed phylogenetic tree of the nuclear hormone receptor genes. The tree is based on a maximum likelihood analysis of 173 sequences from different bilaterian species. Numbers at nodes indicate bootstrap support values >50 % obtained from 1,000 pseudoreplicates. Note that the homologs of ecdysone receptor (EcR), beta fushi tarazu transcription factor 1 (Ftz-F1), hormone receptor 3 (HR3), hormone receptor 4 (HR4), ecdysone-inducible genes E75 and E78, and ultraspiracle/retinoid X receptor (USP/RXR) are present in the onychophoran Euperipatoides rowelli (highlighted in brown) and the tardigrades Hypsibius exemplaris and Ramazzottius varieornatus (both highlighted in blue)
