179 research outputs found

    Hadwiger Number and the Cartesian Product Of Graphs

    Full text link
    The Hadwiger number mr(G) of a graph G is the largest integer n for which the complete graph K_n on n vertices is a minor of G. Hadwiger conjectured that for every graph G, mr(G) >= chi(G), where chi(G) is the chromatic number of G. In this paper, we study the Hadwiger number of the Cartesian product G [] H of graphs. As the main result of this paper, we prove that mr(G_1 [] G_2) >= h\sqrt{l}(1 - o(1)) for any two graphs G_1 and G_2 with mr(G_1) = h and mr(G_2) = l. We show that the above lower bound is asymptotically best possible. This asymptotically settles a question of Z. Miller (1978). As consequences of our main result, we show the following: 1. Let G be a connected graph. Let the (unique) prime factorization of G be given by G_1 [] G_2 [] ... [] G_k. Then G satisfies Hadwiger's conjecture if k >= 2.log(log(chi(G))) + c', where c' is a constant. This improves the 2.log(chi(G))+3 bound of Chandran and Sivadasan. 2. Let G_1 and G_2 be two graphs such that chi(G_1) >= chi(G_2) >= c.log^{1.5}(chi(G_1)), where c is a constant. Then G_1 [] G_2 satisfies Hadwiger's conjecture. 3. Hadwiger's conjecture is true for G^d (Cartesian product of G taken d times) for every graph G and every d >= 2. This settles a question by Chandran and Sivadasan (They had shown that the Hadiwger's conjecture is true for G^d if d >= 3.)Comment: 10 pages, 2 figures, major update: lower and upper bound proofs have been revised. The bounds are now asymptotically tigh

    Polynomial treewidth forces a large grid-like-minor

    Get PDF
    Robertson and Seymour proved that every graph with sufficiently large treewidth contains a large grid minor. However, the best known bound on the treewidth that forces an ×\ell\times\ell grid minor is exponential in \ell. It is unknown whether polynomial treewidth suffices. We prove a result in this direction. A \emph{grid-like-minor of order} \ell in a graph GG is a set of paths in GG whose intersection graph is bipartite and contains a KK_{\ell}-minor. For example, the rows and columns of the ×\ell\times\ell grid are a grid-like-minor of order +1\ell+1. We prove that polynomial treewidth forces a large grid-like-minor. In particular, every graph with treewidth at least c4logc\ell^4\sqrt{\log\ell} has a grid-like-minor of order \ell. As an application of this result, we prove that the cartesian product GK2G\square K_2 contains a KK_{\ell}-minor whenever GG has treewidth at least c4logc\ell^4\sqrt{\log\ell}.Comment: v2: The bound in the main result has been improved by using the Lovasz Local Lemma. v3: minor improvements, v4: final section rewritte
    corecore