20,221 research outputs found
Power system security enhancement by HVDC links using a closed-loop emergency control
In recent years, guaranteeing that large-scale interconnected systems operate safely, stably and economically has become a major and emergency issue. A number of high profile blackouts caused by cascading outages have focused attention on this issue. Embedded HVDC (High Voltage Direct Current) links within a larger AC power system are known to act as a “firewall” against cascading disturbances and therefore, can effectively contribute in preventing blackouts. A good example is the 2003 blackout in USA and Canada, where the Québec grid was not affected due to its HVDC interconnection. In the literature, many works have studied the impact of HVDC on the power system stability, but very few examples exist in the area of its impact on the system security. This paper presents a control strategy for HVDC systems to increase their contribution to system security. A real-time closed-loop control scheme is used to modulate the DC power of HVDC links to alleviate AC system overloads and improve system security. Simulations carried out on a simplified model of the Hydro-Québec network show that the proposed method works well and can greatly improve system security during emergency situations.Peer reviewedFinal Accepted Versio
DC grids for integration of large scale wind power
It is widely recognized that the future wind power development in the Nordic region will be to a large extent be offshore. The most promising technology for that is the voltage source converter (VSC) HVDC. A review of the most important options and state-of-the-art related to transients in HVDC systems, converters, grid topologies, control strategies and wind power clustering are presented in this paper
Optimal Control Design for Multiterminal HVDC
This thesis proposes an optimal-control based design for distributed frequency control in multi-terminal high voltage direct current (MTDC) systems. The current power grid has become overstressed by rapid growth in the demand for electric power and penetration of renewable energy. To address these challenges, MTDC technology has been developed, which has the potential to increase the flexibility and reliability of power transmission in the grid. Several control strategies have been proposed to regulate the MTDC system and its interaction with connected AC systems. However, all the existing control strategies are based on proportional and integral (PI) control with predetermined controller structures. The objective of the thesis is to first determine if existing control structures are optimal, and if improved controller structures can be developed.The thesis proposes a general framework to determine the optimal structure for the control system in MTDC transmission through optimal feedback control. The proposed method is validated and demonstrated using an example of frequency control in a MTDC system connecting five AC areas
Partial discharge behavior under operational and anomalous conditions in HVDC systems
Power cables undergo various types of overstressing conditions during their operation that influence the integrity of their insulation systems. This causes accelerated ageing and might lead to their premature failure in severe cases. This paper presents an investigation of the impacts of various dynamic electric fields produced by ripples, polarity reversal and transient switching impulses on partial discharge (PD) activity within solid dielectrics with the aim of considering such phenomena in high voltage direct current (HVDC) cable systems. Appropriate terminal voltages of a generic HVDC converter were reproduced - with different harmonic contaminations - and applied to the test samples. The effects of systematic operational polarity reversal and superimposed switching impulses with the possibility of transient polarity reversal were also studied in this investigation. The experimental results show that the PD is greatly affected by the dynamic changes of electric field represented by polarity reversal, ripples and switching. The findings of this study will assist in understanding the behaviour of PDs under HVDC conditions and would be of interest to asset managers considering the effects of such conditions on the insulation diagnostics
Distributed Secondary Frequency Control through MTDC Transmission Systems
In this paper, we present distributed controllers for sharing primary and
secondary frequency control reserves for asynchronous AC transmission systems,
which are connected through a multi-terminal HVDC grid. By using Lyapunov
arguments, the equilibria of the closed-loop system are shown to be globally
asymptotically stable. We quantify the static errors of the voltages and
frequencies, and give upper bounds for these errors. It is also shown that the
controllers have the property of power sharing, i.e., primary and secondary
frequency control reserves are shared fairly amongst the AC systems. The
proposed controllers are applied to a high-order dynamic model of of a power
system consisting of asynchronous AC grids connected through a six-terminal
HVDC grid.Comment: arXiv admin note: text overlap with arXiv:1409.801
Control of VSC-HVDC with electromechanical characteristics and unified primary strategy
High voltage dc (HVDC) systems act as the prevailed solution for transmitting offshore wind energy to onshore main grids. Control of the voltage source converters (VSC) in HVDC systems is decisive for the performance. This paper proposes the control of VSC-HVDC with electromechanical characteristics and unified primary strategy, as a reaction to the updated requirements of the ac grid transmission system operators. As two important aspects of VSC-HVDC control, converter control and primary control are both designed in detail. Electromechanical characteristics make the VSC capable of providing inertia to the ac networks as well as simplicity in island operation. Besides, unified primary control is given as a universal primary strategy for VSC stations, and especially takes into account frequency support and control mode transition. The proposed converter control is validated in scaled-down 10 kW laboratory setups, while the proposed primary control is endorsed by the simulation tests on a CIGRE multi-terminal HVDC model.Peer ReviewedPostprint (author's final draft
Application of Grey Wolf Optimizer Algorithm for Optimal Power Flow of Two-Terminal HVDC Transmission System
This paper applies a relatively new optimization method, the Grey Wolf Optimizer (GWO) algorithm for Optimal Power Flow (OPF) of twoterminal High Voltage Direct Current (HVDC) electrical power system. The OPF problem of pure AC power systems considers the minimization of total costs under equality and inequality constraints. Hence, the OPF problem of integrated AC-DC power systems is
extended to incorporate HVDC links, while taking into consideration the power transfer control characteristics using a GWO algorithm. This algorithm is inspired by the hunting behavior and social leadership of grey wolves in nature. The proposed algorithm is applied to two different case-studies: the modified 5-bus and WSCC 9-bus test systems. The validity of the proposed algorithm is demonstrated by comparing the obtained results with those reported in literature using other optimization techniques. Analysis of the obtained results show that the proposed GWO algorithm is able to achieve shorter CPU time, as well as minimized total cost when compared with already existing optimization techniques. This conclusion proves the efficiency of the GWO algorithm
Chance-Constrained AC Optimal Power Flow Integrating HVDC Lines and Controllability
The integration of large-scale renewable generation has major implications on
the operation of power systems, two of which we address in this work. First,
system operators have to deal with higher degrees of uncertainty due to
forecast errors and variability in renewable energy production. Second, with
abundant potential of renewable generation in remote locations, there is an
increasing interest in the use of High Voltage Direct Current lines (HVDC) to
increase transmission capacity. These HVDC transmission lines and the
flexibility and controllability they offer must be incorporated effectively and
safely into the system. In this work, we introduce an optimization tool that
addresses both challenges by incorporating the full AC power flow equations,
chance constraints to address the uncertainty of renewable infeed, modelling of
point-to-point HVDC lines, and optimized corrective control policies to model
the generator and HVDC response to uncertainty. The main contributions are
twofold. First, we introduce a HVDC line model and the corresponding HVDC
participation factors in a chance-constrained AC-OPF framework. Second, we
modify an existing algorithm for solving the chance-constrained AC-OPF to allow
for optimization of the generation and HVDC participation factors. Using
realistic wind forecast data, for 10 and IEEE 39 bus systems with HVDC lines
and wind farms, we show that our proposed OPF formulation achieves good in- and
out-of-sample performance whereas not considering uncertainty leads to high
constraint violation probabilities. In addition, we find that optimizing the
participation factors reduces the cost of uncertainty significantly
The Alternate Arm Converter: A New Hybrid Multilevel Converter With DC-Fault Blocking Capability
This paper explains the working principles, supported by simulation results, of a new converter topology intended for HVDC applications, called the alternate arm converter (AAC). It is a hybrid between the modular multilevel converter, because of the presence of H-bridge cells, and the two-level converter, in the form of director switches in each arm. This converter is able to generate a multilevel ac voltage and since its stacks of cells consist of H-bridge cells instead of half-bridge cells, they are able to generate higher ac voltage than the dc terminal voltage. This allows the AAC to operate at an optimal point, called the “sweet spot,” where the ac and dc energy flows equal. The director switches in the AAC are responsible for alternating the conduction period of each arm, leading to a significant reduction in the number of cells in the stacks. Furthermore, the AAC can keep control of the current in the phase reactor even in case of a dc-side fault and support the ac grid, through a STATCOM mode. Simulation results and loss calculations are presented in this paper in order to support the claimed features of the AAC
- …
